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CHAPTER 1 GENERAL INTRODUCTION 

Voltage Controlled Oscillators (VCO) and filters are essential functional blocks in 

digital communication systems, disk drive electronics, wireless receivers, optical receivers 

and microprocessors. VCOs and Alters can be implemented in bipolar, BiCMOS, GaAs, SiGe 

and CMOS technologies. These processes provide different advantages and disadvantages. In 

order to get low cost and low dissipated power, which is very important in the modem 

market, CMOS technology becomes more and more attractive. 

In this dissertation, two main topics are focused upon. The first one is the study of the 

high speed VCO with temperature and process variation compensation. The second one is the 

study of high-speed filters. Both of them are implemented in a TSMC 0.25pm CMOS 

process. 

The current mirror is an essential building block in many analog circuits. Although 

CMOS processes capture the digital market, the bipolar process remains popular for high­

speed application due to the very high unity-gain frequency of the bipolar transistor. This 

dissertation also includes a study of bipolar current mirrors and the introduction on a new 

high-performance mirror structure. 

1.1 Dissertation Organization 

The dissertation is composed of seven chapters. An overview of the basic concepts of 

VCO, filter and current mirror design is presented in Chapter 1. The design of high-speed 

voltage controlled oscillators with process and temperature compensation are discussed in 

Chapter 2. The design issues for high frequency VCOs, including the transfer characteristics 

of the VCO and methods of maximizing the VCO frequency are discussed in Chapter 3 and 

4. The concept of designing high-speed VCO-derived filters is introduced in Chapter 5. The 

design of current mirrors with accurate mirror gain for low |3 bipolar transistors is discussed 

in Chapter 6. Finally, The general conclusions are provided in Chapter 7. 
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1.2 Overview of Voltage Controlled Oscillators 

Voltage-controlled oscillators (VCO) are essential building blocks in microprocessors 

and communication system [1] [2]. Preferred requirements in the design of many VCOs are: 

1) high spectral purity and low phase noise, 2) large frequency tuning range, 3) good 

frequency stability to the temperature and process, 4) low power consumption, 5) low 

fabrication cost, and 6) linearity of frequency versus control voltage for some applications. 

The VCO can be implemented in both the CMOS and bipolar process. Recently, the 

CMOS process has captured the most integrated circuit market. In contrast to the bipolar or 

GaAs counterparts, CMOS technology provides three significant advantages: low power 

dissipation, low fabrication cost, and the possibility of integrating digital and analog circuits 

on one chip to improve the overall performance. These three attributes make the CMOS 

process more attractive than the bipolar process in microprocessors and in the 

communication circuits market. Although the CMOS transistor is quite slow compared to the 

bipolar transistor, it does achieve and will continue to achieve significant improvements in 

speed due to the fact that the dimensions of MOS devices will continue to scale down as 

process advance. The current unity-gain frequency ft of the CMOS transistor can be expected 

to approach 100 GHz as the channel length is scaled down to 50nm in 2010 [3]. 

Three types of CMOS VCOs are commonly considerations in the design of the VCO. 

They are the ring oscillator VCO [2] [4], the LC tank VCO [5] [6], and the relaxation VCO 

[7]. 

The LC tank VCO often has superior spectral purity and a large tuning range. The 

quality of the LC-VCO relies on the high-quality LC-tank circuit. Multi-chip solutions 

provide high-quality reactive component, but invariably increases the fabrication costs. 

Although fully integrated spiral inductors on silicon substrates do not require extra post­

processing steps and have found increased applications in recently years, due to the parasitic 

effects, only low-quality inductors can be achieved in most process. The on chip inductors 

also occupy a large area and thus increase fabrication costs. Recently, the bonding wire has 

been used as the inductor [8]. This technique increases the quality factor of the LC tank, but 

it is not widely accepted in industry for mass production due to yield concerns and the costs 

associated with providing additional bonding works. 
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In contrast to the LC tank, a relaxation VCO doesn't need external components so it 

can be fully integrated. But unfortunately, its phase noise is often inferior and the tuning 

range is often relatively small. 

One of the most commonly used CMOS VCOs in high-speed circuits is the ring 

oscillator. Monolithic CMOS ring oscillators have advantages in terms of relative high 

spectral purity, high frequency capability, a large tuning range, good matching, multi-phase 

outputs and low fabrication cost. 

In this dissertation, the goal is to design a high quality CMOS ring VCO. The study 

focuses on: 1) reducing the variation of VCO frequency to the process and temperature 

variations, 2) keeping a monotone relationship between the control voltage and frequency of 

the VCO, 3) maximizing the operation frequency of the VCO in a given process. 

1.3 Overview of High - Speed Filters 

Integrated analog filters can be classified into two categories: continuous-time filters 

and discrete-time filters. Continuous-time filters are capable of operating at higher 

frequencies than the discrete-time filter but at a cost of deterioration in linearity and noise 

performance. There are, however, many applications in the areas of signal processing circuits 

in which the distortion and noise performance requirements are relaxed and the integrated 

filters are particular attractive in these environments [9]. The design of integrated filters 

poses increasable challenges as the speed of the systems continues to increase. 

In the discrete-time filter domain, the switch-capacitor filter is widely used. In switch 

-capacitor filters, the time constant and quality factor of the filter are dependent on the ratio 

of two passive elements. So the switch-capacitor filters have very excellent frequency 

linearity and accuracy. Unfortunately the speed of operation of the switch-capacitor filters is 

dependent on the relative lower bandwidth of the operational amplifiers and the speed of the 

reference clock. 

In the continuous-time filter domain, gm-C filters offer a speed advantage over active 

R-C and MOSFET-C filters. The speed of the active R-C and MOSFET-C filter is limited by 

the bandwidth of the OP AMP that is the basic active element in these filters. The speed of 



www.manaraa.com

4 

the gm-C filter is limited by the unit gain frequency of a transconductor which is much higher 

than the gain-bandwidth product of the OP AMP. 

Reported continuous-time CMOS monolithic filters are invariably limited to 

operating frequency that are much lower than the reported oscillation frequencies of VCOs 

designed in the same process. This dissertation proposes a new type integrated filter, the 

VCO-derived filter. This type of filter can operate at very high frequencies. 

1.4 Overview of Bipolar Current Mirror 

The current mirror is one of the most basic building blocks used in linear IC design. 

Although the CMOS process has become dominant in applications requiring a large amount 

of digital circuitry on a chip, BJT circuits in either BiCMOS or bipolar processes remain 

popular for high-speed applications due to the very high unity-gain frequencies attainable 

with modem bipolar transistors. Unfortunately, in bipolar transistors, the base control 

terminal draws a nonzero input current. The nonzero input current causes an error in the 

mirror gain. 

There are several known approaches for minimizing the base current effects [9]-[11]. 

Most are suitable for high P transistors where the detrimental effects of base current loss on 

mirror gain are already modest. For low (3 transistors, most existing methods show either 

poor accuracy or poor frequency response. 

A new bipolar current mirror, which provides a better gain match for low P transistors 

is introduced in this dissertation. 
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CHAPTER 2 HIGH-SPEED VCO WITH PROCESS AND 

TEMPERATURE COMPENSATION 

2.1 Problem Definition and Motivation 

Recently, voltage controlled oscillators have been successfully used in high-speed 

clock recovery systems. One key property of any VCO is the transfer characteristics which is 

the relationship between the input control voltage and the frequency of the VCO. Often the 

transfer characteristics are nearly linear in which case the sensitivity of the VCO is a 

constant. For purposes of discussion herein below, the term "sensitivity" will refer to the 

derivative of the transfer characteristics. To facilitate the discussion, it will be assumed that 

the sensitivity is a constant although such an assumption is not critical. A VCO with a high 

sensitivity will experience large changes in the frequency due to small changes in the input 

control voltages whereas a VCO with a low sensitivity will experience small changes for the 

same changes in the input control voltage. A VCO with a high sensitivity will be more 

vulnerable to noise on the control voltage input. Noise on the control voltage input will cause 

jitter in the output signal of the VCO. When the VCO is used as part of a Phase Locked Loop 

in a high-speed clock or data recovery circuit, increases in jitter will degrade performance 

(specifically increase the error rate in the system). Jitter is one of the major obstacles that 

must be managed when designing high-speed serial communications networks. 

Most existing VCOs used in high-speed data and clock recovery circuits are 

intentionally designed to have a high sensitivity. This is necessary because the VCO must be 

able to function properly in the presence of large variations in processing technology, 

variations of temperature, and variations in the frequency of the incoming data. Variations in 

VCO frequency due to process changes are often in the ±20% range. Correspondingly 

variations in VCO frequency due to temperature changes with a fixed control voltage are 

often in the ±20% range as well. Variations in VCO frequency due to incoming data changes 

are often in the ± 0.01 % to 1% range depending upon the particular protocol that is being 

implemented. To guarantee that the VCO will work over process variations, over temperature 
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variations, and over system variations, the VCO adjustment range must accommodate the 

cumulative deviations due to all three factors. 

The following simplified example is discussed below for the demonstration of the 

implications of process and temperature compensation. If a system specification as specified 

in a standard stipulated that the frequency will be restricted to a ± 1 % variation, a process 

variation causes a change in VCO frequency that is bounded by ± 20 %, and a temperature 

variation causes a change in VCO frequency bounded by ± 20 %, then the VCO would need 

to be designed for ± 41 % variation. It can be seen that the system level variation is very 

small compared to the process and temperature variations and thus the sensitivity must be 

very high to accommodate for the temperature and process variations. In transceiver 

applications, this high sensitivity is accompanied by an increase in the jitter of the data or 

clock recovery circuitry. If perfect temperature and process compensation were provided, the 

VCO in the preceding example would need to only accommodate for the system level 

variation of ± 1 %. This would allow for a drastic reduction in the sensitivity of the VCO and 

correspondingly a substantial reduction in jitter. 

2.2 Literature Review 

There are several ways to provide temperature and process compensation [12]-[15]. 

Recent work by Wing-Hong Chan [12] discussed an attempt to reduce the jitter in Phase 

Locked Loops and Delay Locked Loops by providing temperature compensation of the VCO. 

In his design, Chan used a Proportional To Absolute Temperature (PTAT) current to achieve 

a temperature compensated replica biasing scheme. Figure 2.1 shows the circuits used by 

Chan for temperature compensated biasing. Figure 2.2 shows the block diagram of an 

interpolating VCO with temperature variation compensation. This provides for a reasonable 

level of temperature compensation, but from a system level perspective, providing only 

temperature compensation without process compensation does not allow for the dramatic 

reduction in sensitivity discussed above. On the other hand, a temperature stable resistor, 

which is unavailable in practical commercial CMOS process, is also needed in the Chan 

realization. This is another disadvantage of Chan's approach. 
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2.3 VCO with Process and Temperature Compensation Design 

Our strategy provides for both temperature and process compensation and thus offers 

potential for a major reduction in the sensitivity of the VCO. This goal is achieved by using a 

master-slave approach in which a master VCO is compensated for process and temperature 

variations. The master VCO is embedded in a Phase Locked Loop (PLL) which is locked to a 

reference frequency. The bandwidth of the loop filter in the PLL can be made very narrow 

because there are no process variations once fabrication is complete and because thermal 

variations have very long time constants relative to the period of the incoming data. The 

control signal of each VCO is comprised of two additive parts. One is controlled by a 

temperature and process compensation bias circuit and the other is controlled by an external 

input. If the reference frequency input of the PLL is temperature and process independent, 

the control voltage of the master VCO in the PLL will track the temperature and process 

variations. This control voltage is fed to the slave VCO. If the two VCOs are nominally 

matched (or have matched internal delay cells), the compensating voltage that is needed to 

compensate the master VCO for temperature and process will also approximately 

compensate the slave VCO for temperature and process. Thus, the external control input 

ideally need not compensate for either temperature or process variations and thus must only 

compensate for system level variations. As such, the sensitivity to the incoming data 

variation of the slave VCO can be made very small resulting in a reduction of jitter in data 

and clock recovery circuits that use the slave VCO. 

2.3.1 The architecture of our proposal design 

The block diagram of a temperature and process compensated VCO system is shown 

in Figure 2.3. The PLL is comprised of three basic elements, a Phase-Frequency Detector 

(PFD), a Loop Filter (LF) and a master VCO (VCOl). The system includes two VCOs, 

VCO, (master) and VCO% (slave). The two VCOs have the same delay stages. Each delay 

stage has two summed control inputs: one from the output of the loop filter V^ri and the other 

from an external input through V%, (V%%). The VCOs must have a large tuning range and gain 

from the Vctri input to compensate for process and temperature variations. 
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The operation of this system will be described by first assuming that the external 

inputs to the VCOs, V%i and V%%, are the same. Since process variations show no time 

dependence and thermal variations inherently have very large time constants relative to the 

frequency of oscillation of either the master VCO or the slave VCO, the time constant of the 

loop filter can be made very long but get short relative to the thermal time constants. This 

will provide good noise immunity as well as temperature and process compensation for the 

frequency of oscillation of the VCOs. 

REF 
Vctrl 

VCOl 

Phase Locked Loop 
Vxl 

OSC * 

PFD LPF 

VC02 

i 
i 
i 
i 

» 
i 

i 
i 
i 

Figure 2.3: Basic architecture of temperature and process compensation VCO 

Process and temperature compensation for the slave VCO (VC02) can be achieved if 

the process and temperature dependencies of the delay stages in the slave VCO (VC02) are 

similar to or identical to those in the master VCO (VCOl). One way to achieve similar 

process and temperature dependencies between VCOl and VC02 is to use identical delay 

stages in both structures. The oscillating frequencies of these VCOs can be made different if 

the number of delay stages in these structures differs. If the number of stages were the same, 

the temperature and process variations will be nearly the same, differing slightly due to 
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random mismatch effects and small thermal gradients across the die. If the number of stages 

differ, the wave shape and signal levels will vary somewhat at high frequencies thus 

introducing some variations in the process and temperature dependencies between the delay 

stages of VCOl and VC02. These variations will manifest themselves in incomplete 

compensation of VC02 by the control signal Vctrl. 

The Vxi input to VCOl ideally has no impact on the compensation characteristics of 

the PLL provided linear operation of the three blocks of the PLL is maintained. It is provided 

to facilitate obtaining architectural symmetry between the delay stages in the VCOs. The V# 

input to VC02 will serve as the control input to VC02. The gain of the VCO (freq./V*2) can 

be made very small. This low VCO gain is desirable for reducing jitter in high-speed 

communication circuits where the slave VCO is used in a high frequency PLL for clock and 

data recovery. 

2.3.2 Implementation in TSMC 0.25 uM CMOS process 

The high-frequency implementation will be focused on systems where the nominal 

operating frequency of the slave VCO is 2GHz and where the maximum variations required 

on the slave VCO output is at most ± 1%. Since a data rate variation of ± 0.01% to 1% is 

typical of what is seen in standards for high-speed data communication networks [16], a 

VCO with this narrow adjustment range should be useful for building low-jitter clock and 

data recovery transceivers. 

A specific implementation of the system of Figure 2.3 is shown in Figure 2.4. The 

delay stages in the VCOs are fully differential input and output stages with both current 

source and load biasing. The PFD provides both an UP signal and a DOWN signal to the 

Loop Filter. The Loop Filter is comprised of three blocks: a Charge Pump (CP) that converts 

the UP and DOWN phase voltage information into a single-ended current, a Low-Pass Filter 

that filters this current to generate a control voltage, and a Self-Bias Generator that converts 

the filter output voltage to the two reference voltages that bias the delay stages. 

The design was implemented in a TSMC 0.25 |im process that is available through 

the MOS IS program. The details of the following design discussions are applicable 

specifically to that process. 
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Figure 2.4: Block diagram of temperature and process compensation VCO in 2 GHz 
implementation 

2.3.2.7 jfeview of P&ase Locted Loop (CPPfJL) 

The basic PLL is comprised of four parts, a frequency detector (PD), a low-pass filter 

(LF), a VCO and a frequency divider. The PD compares the phase of the VCO divided output 

and a reference signal, generating an error signal that is used to adjust the VCO frequency 

until the phase error is time constant. The PLL is locked when the phase error is constant 

over time, i.e., when the loop is locked, the VCO will generate an output with a frequency 

equal to that of the reference input 

In many high-speed communication systems, a crystal-referenced clock is generated 

that is at a much lower frequency than the data rate of the system. These crystal-referenced 

clocks are inherently very temperature stable and nearly independent of the parameters of a 

process. It will be assumed that such a clock is available and it is used to generated the 

reference signal Va# in the phase locked loop The exact frequency of the clock is not 

critical, only the temperature and process insensitivity of the clock. 
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The locking process of the PLL is highly nonlinear. Fortunately, once a PLL is in 

lock, its dynamic response to input-signal phase and frequency changes can be well 

approximately by a linear model, as long as these changes are slow and small around their 

operation point [9] [17]. 

I will consider two types of PLLs [17]. A type I PLL has one pole at the original in 

the open loop transfer function. The pole comes from the VCO because the VCO integrates 

the phase error between the periodic reference input and the VCO output. For convenience, it 

will be assumed that the loop filter is a first-order low-pass filter although such an 

assumption is not necessary. With this assumption the type I PLL is a second-order system 

Figure 2.5 [17] shows the linear model of the type I PLL where (Our is the -3 dB bandwidth 

of the low-pass filter. The open loop transfer function of the PLL is 

1 ^ = /r . ^ . -y™ 
open PD p (2 1) 

1 + 

PD LPF VCO 

1  

1 +  5  

^ LPF J  

h out 

Figure 2.5: The linear model of type I PLL 
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The closed-loop transfer function is 

H ( s )  | c  -  K ™ K v c o  
cbw ^2 (2.2) 

I- J + 

As expected, when s —> 0, H(s)|dosed —> 1. Equation (2.2) reveals the fact that when 

the input phase changes very slowly, the output phase will follow the input phase change. 

The natural frequency of the loop and damping factor is given in Equation (2.3) and (2.4) 

PD ^ VCO (2.3) 

(2.4) 

An important observation from Equation (2.4) is that the damping factor of the loop 

decreases as the PD gain Kpo and the VCO gain Kvco increase. On the other hand, as (Ouppis 

reduced to minimize the ripple on the control voltage, the damping factor degrades also. 

The two poles of the closed-loop system are given by 

*1,2 "I(2.5) 

If ^ > 1, both poles are real, the system is over damped, and the transient response 

contains two exponentials with time constants 1/si and l/s?, If $" < 1, the poles are complex 

and the response to an input frequency step = Aa%f(f) is equal to 

^(0 = 1—1=!==^"' sin^,^l-^f + ^ 
•Ç2 

A&k(f) (2.6) 

where is the change in the output frequency and 0 = sin"' ^1-^ . Thus, the step 

response contains a sinusoidal component with a frequency - çT that decays with a 

time constant 

Equation (2.6) indicates that the exponential decay determines how fast the output 

approaches its final value, implying the settling speed of PLL is proportional to 
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From Equation (2.3) and (2.4), we have Equation (2.7) 

1 % = 
(2.7) 

A type II PLL is also called a Charge Pump PLL (CPPLL). In our design, a CPPLL is 

chosen. The basic CPPLL includes a Phase Frequency Detector (PFD), a Charge Pump (CP), 

a Loop Filter, and a VCO. Figure 2.6 shows a block diagram of a CPPLL and Figure 2.7 

shows the linear model of a CPPLL[17]. Neglecting the capacitor C% first, the open loop 

transfer function is shown in Equation (2.8). 

H ( s )  open 
= i .  

2# 

r 
1 
\ 

V 

K, yco 
(2.8) 

The closed-loop transfer function is described by Equation (2.9) 

H ( s )  

y^(RpC ps + l) 
2nC„ P P 

closed 

^ + 
2# 2%C, 

(2.9) 
VCO 

The natural frequency of the loop and the damping factor are 

= 

\ 2%Cp 

VCO 

(2.10) 

(2.11) 
2 V 2^" 

An observation from Equation (2.11) is that the stability of the loop becomes worse 

as decrease. 

With complex poles, the decay time constant is give l/(p#„) = 4^/(^7^^^). This 

means that the greater , the faster of the settling time of the loop. 
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Figure 2.6: Simple Charge Pump PLL 

PD/CP/LPF VCO 

© s 

()> out 

Figure 2.7: The linear model of simple Charge Pump PLL 

The zero ^ = ) in the loop Alter makes the loop stable. But when the 

Charge Pump current charges or discharges the loop capacitor, it will cause the node voltage 

ripple The voltage ripple modulates the VCO frequency, producing a waveform that is no 

longer periodic, i.e. causing a jitter at the output signal. A small capacitor Co is added to 

minimize the ripple. After the small capacitor added, the PLL is a third-order system. But, if 

the second capacitor is relatively smaller compared to the first one (less than one of tenth), 
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the PLL can be approximated in a second-order system. And all discussions above can be 

applied [18]. 

The most important issue when designing a PLL is its jitter performance. For CPPLL, 

there are four main jitter sources: the supply and ground noise, the substrate coupled noise, 

the device noise and the input jitter in a reference (or input data). The non-idealities of the 

building block in the CPPLL will also cause the phase jitter. These phenomena will be 

discussed in detail later. 

2.3.2.2 VCO de&zy f&zge design 

The delay stage used in both the master VCO (VCOl) and the slave VCO (VC02) is 

shown in Figure 2.8. The temperature and process compensation is provided by the control 

voltages, Vp and V\. Since process and temperature compensation which requires a large 

delay adjustment range is already provided by V? and V%, the small delay adjustment range 

provided by Vx will require only a small change in the tail current. This can be achieved by 

making M8 small compared to M7. 

Equation (2.12) gives an approximate expression for the delay of the delay stage in 

terms of the total tail current. 

where Ta is the average delay of the high to low plus the low to high transition times, C^ is 

the effective capacitance at the output nodes of the delay stage, is the differential pail tail 

saturation region so the small signal approximation can be used. 

Since is the sum of the current through M7, /wn, and the current through M8, 

the delay can be expressed as 

T (2.12) 

current, and & . Here we assume that the input transistors Ml and M2 are in the 

T (2.13) 
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M3 M5 M6 M4 

Figure 2.8: Delay stage of the VCO 

If the percent change in the delay due to the change of the current 7%%/% is assumed to 

be small and if L7 and L8 are assumed to be the same, the change in delay can be given as 

I  tail 

(2.14) 
7% /w WW;,? 

where VgB is the excess bias voltage of M7 and M8. 

This percentage change in delay must be provided over all temperature and process 

variations. It thus follows that 

8 _ T ,< . 2 'V n. 'AV,  (2.15) 
W ,  y  a i  

The delay cell was designed for a nominal delay of Td = 62.5 psec. This delay was 

chosen so that we could build a 2GHz oscillator with four delay stages in the 0.25|im 

process. 

Table 2.1 shows the transistors sizes of delay cell shown in Figure 2.8. 
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Table 2.1: The transistors sizes of the delay stage in Figure 2.8 

Wl/Ll W2/L2 W3/L3 W4/L4 
6u/250n 6u/250n 3.5u/250n 3.5u/250n 
W5/L5 W6/L6 W7/L7 W8/L8 

3.5u/250n 3.5u/250n 20u/250n 2u/250n 

2.3.2.3 VCO dgfigM 

Figure 2.9 shows the VCO structure along with the output buffer. The output buffer 

provides a differential to single-ended conversion and isolates the influence of any loading 

from the frequency of oscillation of the VCO. The buffer structure is shown in later. 

The 4-stage ring Oscillator provides complimentary in-phase and quadrature outputs. 

This is very attractive in monolithic communication circuits. 

V, 

V. » 
V> 

p> k> i p> D 
LX 

D 
IX 

ë 
3 

PQ 

Vr 

Figure 2.9: Block diagram of VCO 

2.3.2.4 P/kzM aw/ Freçwgmcy fWecfor (PFDj 

The Phase Frequency Detector (PFD) used in the Figure 2.4 is shown in Figure 2.10 

[2]. This detector is a rising-edge detector that generates UP and DOWN pulses on the rising 

edges of fREp and fosc- The gate sizes in the UP path are the same as those of corresponding 

gates in the DOWN path. 

If fREF leads fosc, the UP pulse is wider than the fixed DOWN pulse with the UP 

pulse width being linearly dependent upon the amount of phase lead. If fosc lags f^p, the 

DOWN pulse is wider than the fixed UP pulse with the DOWN pulse width being linearly 

dependent upon the amount of phase lag. When the PLL is locked, the UP and DOWN 

pulses have the same widths. 
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Figure 2.11a shows the relationship between the ideal UP and DOWN pulses when 

f%EF leads fosc- In this figure, we actually show a frequency difference as well. For the 

purpose of explanation the amount of phase lead indicated grossly over exaggerates what 

would be anticipated if the phase locked loop were in or near to lock. From this figure, the 

fixed down pulse width and growing up pulse width are apparent. Figure 2.1 lb shows the 

corresponding relationship when fRgp lags fosc-

Figure 2.11c shows an expanded view of the four pulses in the vicinity of the UP 

transitions in the case where f%EF leads fosc- The corresponding situation when f%EF lags fosc 

should be apparent. In this figure, D? is the phase lead of faer, tuo is the delay from the rising 

edge of the fosc pulse until the down pulse becomes high, tuR is the delay from the rising 

edge of the fRsr pulse until the UP pulse becomes high, tu? is the width of UP pulse, and 

toowx is the width of DOWN pulse. 

It follows from this figure that, when f%EF leads fosc, the UP and DOWN pulse widths 

are given by 

+ fg + f/o + ffw (2.16) 

fp + f/o + (2.17) 

where 

(2-18) 

+ ^ + W + W (2.19) 

And where the terms t%, i={ 1,... 8} j= {u,d} refer to the low to high delay of the ith logic gate 

in either the up or down path. The delays of gates numbered 9 and 10 are common to both the 

UP and DOWN and thus carry only a single numbered subscript. 

Correspondingly, when f%EF lags fosc, the UP and DOWN pulse widths are given by 

+ f/0 + f/w (2.20) 

fboww = - fw + fp + f/o + (2-21) 
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'REF 

^osc 

DOWN 

Figure 2.10: Block diagram of the PFD 
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f ̂
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Figure 2.11: UP and DOWN waveform, (a) rising-edge of fREF leads that of fosc- (b) 
rising edge of fREF lags that of fosc (c). expanded view in the vicinity of 
the UP transitions in the case when fREF leads fosc 
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2.3.2.5 C/wzf%e fwwp 

A Charge Pump used in Figure 2.4 is shown in Figure 2.12. Table 2.2 shows the 

transistors sizes of the CP. The Charge Pump is used to convert the logical signals from the 

PFD into analog signals for controlling the VCOs. Ideally, when UP is active, the Charge 

Pump discharges the capacitors by mirroring the current 7cp to the output as a sinking current 

for the duration of the UP pulse. Correspondingly, when DOWN is active, the Charge Pump 

charges the capacitors by mirroring /cp to the output as a sourcing current for the duration of 

the DOWN pulse. 

Narrow UP or DOWN pulses cause problems with the Charge Pump. For example, if 

the DOWN pulse is too narrow, the delays through the Charge Pump will preclude having 

any sourcing current reach the filter capacitors. As a result, the Charge Pump will not 

respond to small phase delays between f%EF and fosc- This will create an apparent "dead-

zone" region in the output from the phase detector. Although in such situations the phase 

information is not lost by the phase detector, it is not transmitted to the Charge Pump. With 

no corrective action taking place when the "dead-zone" exists, jitter between fRgp and fosc 

will be generated. 

3 M4 hr45 
Mrh rt V _ ) 

M2 J Wnb dn -^[Ml 

Vn #-| F Icp 

I 

Vctrl 

DOWN m—Tx^dn 

9/3 14/7 

ur—04>^-
9/3 14/7 

Figure 2.12: Schematic of the Charge Pump 
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Table 2.2: The transistors sizes of the Charge Pump in Figure 2.12 

Wl/Ll W2/L2 W3/L3 W4/L4 
2.26u/250n 2.26u/250n 1.32u/250n 1.32u/250n 

W5/L5 W6/L6 W7/L7 
1.32u/250n 1.32u/250n 7.52u/250n 

The logic gates were initially sized as minimum size. With this gate sizing, the gates 

had sufficiently fast response time to create a substantial "dead zone" as shown in the 

simulation of Figure 2.13a. Although shown only in the first quadrant, this transfer 

characteristic is symmetric into the third quadrant for the phase lag case as well. This dead 

zone covers a range of nearly ± 15 degrees. 

From Equation of (2.18) to (2.21), one easy way to address the "dead zone" problem 

can be developed. Since tio is common to both the widths of the fixed UP pulse and the fixed 

DOWN pulse, increasing tm will reduce or eliminate the "dead zone". Since Gate 10 is 

formed by 2 inverters, increasing t%o by increasing the ratio between the two inverter stages 

results in the improvements shown in Figure 2.13b. Due to the mismatch between the charge 

and discharge currents when the UP and DOWN have identical pulse widths, the curve does 

not pass through the origin. The mismatch between the charge and discharge currents will 

cause a phase error. To eliminate this phase error, careful design and layout of the Charge 

Pump are required. 

2.3.2.6 Loop /Z&er 

The loop filter used in Figure 2.4 is show in Figure 2.14. To implement the big 

capacitors, the NMOS transistors were used. The transistors size of CI is 100um*300um and 

C2 is 50um*10um. From Equation (2.11) of section 2.3.2.1, the nature frequency of the PLL 

loop is around 2 MHz and damping factor is around 0.7. 

2.3.2.7 Bias Generator 

The CP generates only one control voltage for the VCO. In VCO delay cell, two 

control voltages are required for tuning of the VCO operation frequency. A bias generator is 

used to generate two control voltages from the one control voltage V^d of Figure 2.4. A self-
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bias structure is used to reduced the process and temperature variation and also provide good 

supply noise rejection [19] [20]. Figure 2.15 shows the schematic of the bias generator. Table 

2.3 shows the transistors sizes of the bias generator. The wide-swing op amp is used to 

increase the input control voltage (V#d) swing and its structure is shown in Figure 2.16. 

Table 2.4 shows the transistors sizes of the op amp. A capacitor of 3pf was added at the 

output of op amp Vn to compensate the op amp. This capacitor is implemented by CMOS 

transistors. 

The output buffer in Figure 2.4 is show in Figure 2.17. The output buffer serves two 

purposes. It provides a fully differential to single-ended conversion and isolates the influence 

of any loading from the frequency of oscillation of the VCO. Table 2.5 shows the transistors 

sizes of the output buffer. 

Table 2.3: The transistors sizes of the self-bias generator in Figure 2.15 

Wl/Ll W2/L2 W3/L3 W4/M 
6u/250n 12u/250n 3.5u/250n 3.5u/250n 
W5/L5 W6/L6 W7/L7 W8/L8 

7u/250n 7u/250n 20u/250n 40u/250n 

Table 2.4: The transistors sizes of the op amp in Figure 2.16 

Wl/Ll W2/L2 W3/L3 W4/L4 
40u/500n 40u/500n 2.5u/500n 2.5u/500n 
W5/L5 W6/L6 W7/L7 W8/L8 

40u/500n 12u/500n 12u/500n 30u/250n 
W9/L9 W10/L10 Wll/Lll W12/L12 

30u/250n 3u/250n 30u/250n 2.5u/500n 
W13/L13 W14/L14 W15/L15 
2.5u/500n 40u/500n 3u/250n 
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Figure 2.13: Phase error transfer characteristic of the VCO (a) without delay gate 10 
in PFD, (b) with delay gate 10 in PFD 
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Figure 2.14: Schematic of loop filter 
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Figure 2.15: Schematic of the self-bias generator 
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Figure 2.16: The schematic of the wide-swing OP AMP 
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Figure 2.17: The schematic of the output buffer. 
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2.3.2.P FregffgMcy Dzwder 

The Frequency Divider show in Figure 2.4 is used to divide the output frequency of 

the VCO into a low frequency. In our design, the divided ratio is 20. A high ratio requires 

compensation of the loop to maintain stability of the loop. A large time constant for the low-

pass filter is required. The schematic of the Frequency Divided is shown in Figure 2.18. 

Figure 2.19 is the schematic of the DFF used in Figure 2.18. Table 2.6 shows the transistors 

sizes of the DFF. 
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Figure 2.18: Block diagram of the Frequency Divider 
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Figure 2.19: Schematic of DFF 
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Table 2.5: The transistors sizes of the output buffer 

Wl/Ll W2/L2 W3/L3 W4/L4 
6u/250n 6u/250n 6u/250n 6u//250n 
W5/L5 W6/L6 W7/L7 W8/L8 

3.5u/250n 3.5u/250n 3.5u/250n 3.5u/250n 
W9/L9 W10/L10 Wll/Lll W12/L12 

20u/250n 20u/250n 18u/250n 18u/250n 
W13/L13 W14/L14 W15/L15 W16/L16 
6.5u/250n 6.5u/250n 12u/250n 12u/250n 
W17/L17 W18/L18 
12u//250n 12u/250n 

Table 2.6: The transistors sizes of the DFF 

Wl/Ll W2/L2 W3/L3 W4/L4 
1.76u/250n 1.76u/250n 1.76u/250n 1.76u /250n 

W5/L5 W6/L6 W7/L7 W8/L8 
2.2u/250n 2.5u/250n 2.5u/250n 5u/250n 

W9/L9 
2.52u/250n 

2.3.2.70 circw&ry 

A start-up circuit is needed for the PLL. The reason for need of a start-up circuitry 

will be discussed now. When the power is turned on, the electronic states of the internal 

nodes in the loop are undefined. Sometimes the voltage of the bias-generator input node will 

be out of the required operation region. In this case, the bias-generator won't work correctly. 

Sometimes, the bias-generator works properly but the control voltage is too low. The 

relationship of the control voltages and oscillating frequency is inversed proportional. So 

extremely low control voltage will cause a very high output frequency of the VCO. If the 

bandwidth of the frequency divider is not high enough, the clock information will be lost at 

the output of frequency divider. 

The simple start-up circuit shown in Figure 2.20 was used. A voltage divider formed 

by two MOS transistor generates a voltage, V^r. The value of V^f should be in the VCO 

operation range and the accuracy of V^f is not critical. When the power is turned on, 

switches SI and S2 are on and the control voltage node is forced to be V„f. Vpulse that turns 
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on or off SI and S2 can be got from other digital circuitry on the same chip and generally 

cost nothing. Figure 2.20 shows the structure of the start-up block. 

2.4 Simulation Results 

The simulation results are based on TSMC 0.25p,m process available through MOSIS 

program. 

2.4.1 The transfer characteristic of slave VCO 

There are two transfer characteristics of the slave VCO. One is the relationship 

between the output frequency of the slave VCO and the control voltage Vp and V„ (or V*d ) 

that come from the PLL loop. The other one is the relationship between the frequency and 

the control voltage that comes from an external input (V^). Figure 2.21 shows the first type 

transfer characteristic of the slave VCO at different process and temperature comers. The 

results show that the VCO has a large gain to cover the process and temperature variations. 

On the other hand, Figure 2.22 and Figure 2.23 show the transfer characteristic of the slave 

VCO in which the control voltage comes from an external input V%2- The former shows the 

effect of both temperature and process variation and the latter only temperature variation. 

These results show that the VCO can have a small gain to cover the incoming data variations. 

2.4.2 VCO frequency variation due to temperature change 

The slave VCO output frequency was simulated when the temperature was swept 

from 0°C to 100 °C with a step of 20 °C for every fixed control voltage V%2. V%2 was swept 

from 0 to 2.5V. The master VCO was used to generate the voltage V^d in this simulation. 

Figure 2.24 shows the VCO frequency variation due to temperature change over 0 °C 

to 100 °C, while the control voltage V%? was varied from 0 to 2.5V. In order to get a clear 

picture, the curves for V%z equal to or less than 0.9 V are redrawn in Figure 2.25. 
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Figure 2.20: The start-up circuitry 
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Figure 2.21: The transfer characteristic of slave VCO, the control voltage comes from 
the PLL. 1) fast process comer, T=0°C; 2) nominal process comer, 
T=27°C; 3) slow process comer, T=100°C 
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Figure 2.22: Transfer characteristic of the slave VCO, the control voltage comes from 
the external input V^. 1) fast process comer, T=0°C; 2) nominal process 
comer, T=27°C; 3) slow process comer, T=100°C 
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Figure 2.23: Transfer characteristic of the slave VCO over temperature range from 0 
°C to 100 °C and at normal process comer, the control voltage comes 
from the external input V%2. 
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It can be seen that the frequency variation is 0.5% over the 0 °C to 100 °C 

temperature range when V%2 is 0.85 V. The impact of the temperature on the frequency is 

more obvious with the increase of V%2, but the frequency variations are still modest even for 

larger value of V%2- The largest variation is 5.8% over the 0 °C to 100 °C temperature range 

at the condition that V%2 is 2.5 V. Although a relative larger variation was seen when V%2 is 

2.5 V, it is not of concern because the VCO adjusted range for V%3 from 0 V to 0.85 V is 

enough for the applications that the required frequency variation due to system frequency 

variation requirement is only 1% of the center frequency. Furthermore, from the results show 

in the next subsection, a variation of 5.8% is still substantially less than the variation in the 

circuit without compensation. 

2.4.3 Performance improvement with our proposal VCO 

Table 2.7 lists the frequency of slave VCO vs. control voltage V%z at best case (fast 

process comer and low temperature, T=0°C) and worst case (slow process comer and high 

temperature, T=100°C). It can be seen that the drift of the slave VCO frequency is about 

±3.33% over fast and slow process comers and over the 0 °C to 100 °C temperature range. 

Compared to a ±40% drift for the same VCO without the temperature and process 

compensation, using the temperature and process compensated VCO enables a reduction in 

VCO frequency variation of a factor in excess of 10, which will help reduce jitter in clock 

and data recovery circuits that use the PLL. 

Figure 2.26 shows that the VCO without temperature and process compensation has a 

frequency variation of 10% over the 0 °C to 100 °C temperature range and the slave VCO in 

our proposal has a frequency variation of 0.5 % over the same temperature range. There is a 

factor of 20 improvement in frequency drift with proposal VCO. 
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Frequency vs. Temperature 
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Figure 2.24: Slave VCO frequency variation due to temperature change 
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Figure 2.25: Slave VCO frequency variation due to temperature change, maximum 
variation required on the slave VCO output is at 1% of its center 
frequency 
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Table 2.7: Frequency of VC02 vs. control voltage V^ for best case and worst case. 

Control 

Voltage V%2* 

(V) 

Freq. of VC02 @ fastest 

process comer, and T=0 °C 

(best case) (GHz)** 

Freq. of VC02 @ slowest 

process comer, and T=100 °C 

(worse case) (GHz)*** 

Variation 

(%) 

0.7 1.95 1.995 -2.43 

0.8 2.00 2.00 0 

0.9 2.07 2.005 3.33 

Note: 

* This voltage comes from external signal or slave PLL. 

**The control voltage from master PLL is 1.44v @ best case 

*** The control voltage from master PLL is 0.55v @ worst case 

Frequency vs. Temperature 

2.1 i , 

0 20 40 60 80 100 

Temperature (C) 

Figure 2.26: Comparison of frequency drift between our proposal VCO and the VCO 
without compensation 
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2.5 Chip Fabrication and Test Board Design 

In high-speed circuits, a good circuits design is not sufficient to achieve good 

performance because noise coupling can dramatically degrade circuit performance. The noise 

coupling can be classified into two categories by considering the means of coupling: circuit 

coupling between interconnection wires via the parasitic capacitances, resistances and 

inductances, and circuit coupling between devices via the common substrate body. 

To minimize noise coupling, considerable attention was paid to circuit layout, 

package choice and test board design [21]-[31]. 

2.5.1 Layout consideration 

Analog ICs are more invariable sensitive to noise than digital ICs. For any mixed-

signal design with analog circuits and digital circuits on the same chip to be successful, 

careful attention must be paid to layout design. This includes floorplanning, matching, guard 

ringing, shielding and other interconnect considerations. 

In mixed-signal chips, the floorplanning should be thoroughly considered before the 

layout is to begin. Figure 2.27 shows a typical mixed-signal floorplan [32]. Low-level signals 

or high-impedance nodes are considered as sensitive node. These high noise sensitive nodes 

should be placed far away from or closely guarded and shielded from the noisy digital 

circuitry. High-level analog signals are less noise sensitive and can be placed between the 

high noise sensitive analog circuitry and noisy digital circuitry. For the digital signal 

circuitry, high speed digital output driver will introduce large noise currents to the analog 

circuits by interconnected lines or the substrate body. These signals with large switch 

currents should be placed farthest away form the most sensitive analog circuitry. The lower 

speed digital circuits can be placed between non-sensitive analog circuits and the highest 

speed digital circuits. Figure 2.28 shows the floorplan of our VCO with the temperature and 

process compensation circuits. The VCO block contains both VCOl and VC02 laid out in a 

common centroid structure as depicted in Figure 2.29. This circuitry combines both analog 

and digitals on one chip. In our design, the VCO operation frequency is 2 GHz. The 
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Frequency Divider operates from 100MHz to 2 GHz, and other digital circuits operate at 100 

MHz. The charge-pump and bias-generator are considered as analog circuits and they are 

physically separated from digital circuits. 

2.5.2.2 MofcÀmg 

Due to variability in the chip fabrication process, parameters of devices will vary as a 

function of the device size, layout, spaces and orientation [33] [34]. In analog and mixed-

signal blocks, in order to get good performance, it is often necessary to have accurate 

matching of the electrical properties of key devices in circuits such as OP AMP, current 

mirrors, PLLs, etc. 

Matching in our case includes two levels of emphasis; one is the transistor level 

matching in basic components, such as in op amps, Charge Pumps or delay stages. The other 

is the matching between the delay stages in the VCO. Figure 2.29 and Figure 2.30 show the 

matching targets in the VCO design. 

Sensitive analog 

Median swing 

High_swing analog 

Low-speed digital 

High speed digital 

Output buffer 

Figure 2.27: A typical mixed-signal floorplan 
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Figure 2.28: The floorplanning of the proposed VCO 
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Figure 2.29: Matching requirements for the VCO and for the delay staged in the VCO 
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2.5.J.3 Gmmf nag onJ sAieMmg 

Guard rings can be useful in latch-up protection, they also provide isolation between 

different circuits. In this work, guard rings were created by placing a P+ implant (for p-

substrate wafer) between critical circuits and connecting them to the most negative supply. 

The diffusion reduces injected carriers and holds the substrate, ideally, at a fixed potential. In 

our VCO design, two guard rings are used. One is used to enclose the eight delay stages of 

the two VCOs and the other used to enclose the Charge Pump and bias generator. 

Shielding is commonly used to reduce the coupling noise from the parasitic 

capacitances of signal wires. A shield can take the form of a layer tied to analog ground 

placed between two other layers or it can be a barrier between two signals running in parallel. 

Figure 2.31 shows two shielding methods that are used in our layout 

Match 

DNB UPB UP 

Match Match 

Figure 2.30: Matching requirements in Charge Pump. 
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2.5.2.4 Power swppfy and growwfmg ZM%ea 

In mixed-signal system, analog circuits and digital circuits reside together on the 

same substrate. In such system, high amounts of transient current due to switching in digital 

circuits will result in significant voltage spikes on the power supply and ground rails. Low-

level analog signals are very sensitive to such voltage interference. Another significant 

voltage spike will occur due to the inductance of the bonding wire. 

Careful consideration on how power and ground are supplied to both analog circuits 

and digital circuits is essential to minimize the interference noise through the power supply 

and ground rails. One way to reduce the interference is to prohibit the analog and digital 

circuit form sharing the same interconnect and pins. In our VCO design, three sets of pins for 

power supplies and grounds are employed, one is for digital circuit, one is for the VCO, and 

one is for bias generator, Charge Pump and other analog circuits. 

Another way to reduce the interference is to reduce the parasitic resistance and 

inductance. Keeping pins closest to the die edge for sensitive connection such as analog 

supply and ground is a good strategy. The use of double bond wires for supply and ground is 

also beneficial. Both methods were widely used in our design. Figure 2.32 shows the layout 

of our design. This layout is done by following the previous floorplan. 

Analog To analog To digital 

Digital 

Figure 2.31 : Two shielding methods used in our design. 
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Figure 2.32: Layout of our design 

2.5.2 Packaging design 

Packaging supplies the chips with signals and power, removes the heat generated by 

the circuitry, and provides physical support and environmental protection. 

In a high-speed circuit, due to large valve of (/If noise), the ground bounce or 

crosstalk will significantly degrade the performance of the circuit. Traditional through-hole 

packages such as DIP or PGA are not suitable for high frequency applications. One possible 

package for our high frequency circuit is a surface mounting device (SMD) such as SOIC, 

PLLC, LCCC, and PQFP. Surface mounting packages are soldered directly to a circuit board 

with no intervening leads. This type of die mounting reduces the lead inductance and 

capacitance a lot. This can be employed in high-speed applications. But the surface mounting 

package still has a parasitic inductance of 4 nH to 10 nH per pin, it is not small enough for 

some high-speed applications. The best package is no package at all. That means direct 
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mounting the chip on the printed circuit board. For our prototype, wire bond was used for 

making electrical connecting to the die. This "package" dramatically reduced parasitic 

capacitance and inductance. Figure 2.33 shows the placement of the bonding wires of our 

prototype. 
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Figure 2.33: Bonding package for VCO with process and temperature compensation 
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2.5.3 Printed circuit board design 

As with the packaging, the printed circuit board design also plays an important role in 

circuit performance. Poor PCB design can limit parasitic performance or even compromise 

basic functionality. Key components and approaches to PCB design include bypass capacitor, 

decoupling capacitor, impedance match and termination. 

2.5.3.7 Bypass 

A bypass capacitor is need to create an AC shunt to remove undesired energy from 

entering susceptible areas on the circuit in addition to providing other functions such as 

filtering (band-width limiting). It is well known that power supply noise induced by 

simultaneously switching current from digital circuits will degrade the circuit performance. 

The distribution of the power supply must be done in a manner providing a low impedance 

path between the power and ground. Failure to meet this goal at a high frequency will result 

in voltage spikes when fast switching currents are demanded by the devices. Failure to meet 

it at low frequencies will result in voltage droop when stable currents are demanded by the 

devices[35] [36]. 

Generally, at least one bypass capacitor is needed for every PCB. The capacitance 

value of the bypass capacitor should be sufficiently large to make the impedance small at the 

specific frequency of operation. The choice of the bypass capacitor is depend on the 

tolerance of the voltage drop (/IV) at the supply wires, the maximum step change in supply 

current (J/), and the lead inductance between the power supply unit (PSU) and the printed 

circuit board (PCB). As a rule of thumb, bypass capacitors are chosen in the range of 10-470 

pF. 

2.5.3.2 DecowpKng capocifors 

Ideally, the distribution of the power supply should present no coupling between 

devices. Failure to meet this goal will result in spikes or droops produced by one device 

affecting neighbor devices. Decoupling provides a high frequency, low impedance path to 

ground for IC switch noise. Decoupling capacitors also serve as a small reservoir for 
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transient power demands and are particularly useful in reducing peak current surges 

propagated across the board. [35] [36] 

Generally, one decoupling capacitor is needed for every IC on the board. Decoupling 

capacitors usually are placed in parallel with the bypass capacitors. The value of the 

decoupling capacitor is usually 1/100-1/1000 of the bypass capacitor. As a general role of 

thumb, the decoupling capacitor is in the value from 4.7n~100nF. 

At very high frequencies, the parasitic inductance of on-chip power distribution 

metals cannot be ignored. On-chip power bus decoupling becomes important in reducing 

switching noise. For package-level power distribution, the discrete chip capacitors may not 

be sufficient because their parasitic inductance is not low enough to decouple at very high 

frequencies[35]. The provision of adequate decoupling capacitance in the power distribution 

system includes both off-chip and on-chip capacitors. In our design, we used single layer 

chip capacitors served as decoupling capacitors at the package level. Figure 2.34 shows the 

usage of the layer capacitors as decoupling capacitors. 

Metallic plate , Bonding wire 

GND plane 

^IC Chip 

pad 

Layer Capacitor 

Double side FR4 board 

Figure 2.34: The usage of the single layer chip capacitor as decoupling capacitor 
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2.5.3.3 fmpedbnce mafcAmg amf fermmadom 

For high frequency PCB design, another important issue is impedance matching and 

termination. A transmission line with a characteristic impedance of Zo will require resistive 

termination that matches this line impedance. Transmission of high integrity wideband 

signals is possible over properly terminated transmission lines. When a signal ground plane is 

used, the characteristic impedance of a track on the surface (shown in Figure 2.35) is given 

by Equation (2.22) [37] 

where h is the distance between the track and ground plane, w is the track width, t is the 

copper thickness, and Eg# is the effective relative dielectric of the substrate. For the FR4 

substrate, Ee# =5 is commonly used for surface microstrip tracking. For a 0.031" FR4 

substrate with 0.5oz copper, 56mil wide track has a characteristic impedance of 50 O. 

The type of termination will depend on the line impedance and the drivers and 

receivers connected along the line [37] In our design, parallel resistive termination was used 

(shown in Figure 2.36). The terminal resistor value was 50 O. 

The placement of components for the final PC board for my design was shown in 

Figure 2.37. 

-

87 , f 5.98A 1 
(2.22) 

+ 1.41 V0.8 w + tj 

W 

Surface signal plane 

h 

Base ground plane 

Figure 2.35: Surface microstrip track 
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Figure 2.36: Parallel resistive termination 

2.6 Test Results 

The VCO chip described above was tested in our laboratory. After the chip was 

fabricated, no VCO frequency variation due to process change could be measured. So, in this 

dissertation, only the VCO frequency variation due to temperature variation was measured. 

This may, in part, be due to the small number of test devices available. During the 

experiment, the whole test board was placed in an oven where temperature can be adjusted 

from 0 °C to 100 °C. Figure 2.38 shows the measurement set up. 

2.6.1 The transfer characteristic of VCO 

The transfer characteristic of the VCO was obtained by measuring the slave VCO 

output frequency when the control voltage V^ was swept from 0 to 2.5V. Figure 2.39 shows 

the test results of the VCO transfer characteristic. From Figure 2.39, if the maximum 

variation required on the slave VCO output is at most 1 %, (in our case, from 2 GHz to 2.02 

GHz), a change of control voltage V%? from 0 V to 1 V will provide this adjusted range. 

Figure 2.40 shows a zoomed view of the VCO transfer characteristics. It can be seen that the 

slave VCO has a VCO gain of approximately 90 MHz/V (This gain is refer to the external 

inputs V%2). This low VCO gain is very useful for reducing jitter caused by the noise at the 

control voltage node. 



www.manaraa.com

Figure 2.37: Test PCB design, the device inside the circle is the one under test. 
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Figure 2.38: The set up for measurement 
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Figure 2.39: Transfer characteristic of slave VCO (freq/V*?) 
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Figure 2.40: Zoomed view of the transfer characteristic of slave VCO (freq/V*2) 

2.62 VCO frequency variation due to temperature chance 

The slave VCO output frequency was measured when the oven temperature was 

swept from 0 °C to 100 °C with a step of 10 °C (or 5 °C) for a set of 9 fixed control voltages, 

V%2, in the range from 0 to 2.5 V. 

Figure 2.41 shows the drift of the slave VCO frequency. The curves responding to 

V%2 = 0 V, 0.8 V and 1 V were redrawn in expended view in Figure 2.42. This reflects the 

desired operating range of the VCO. It can be seen that the frequency variation is at most 

1.1% over the 0 °C to 100 °C temperature range, provided that 0 V < V%2 <1 V. Thus, for 

system frequency variation requirements of 1%, the VCO adjusted range for V%2 from 0 V to 

1 V is more than enough to provide for both temperature compensation and system variation 

requirements 

Although not critical for intended system performance, it can be observed that the 

variation of frequency with temperature is even modest for larger values of V^.The largest 

drift is 5.3% over the 0 °C to 100 °C temperature range and this occurs when V%? is 2.5 V. 
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The simulation results show the drift of 0.5% at V%2 =0.85V and 5.8% at V%2.=2.5V. 

It can be seen that the simulation results are very close to the test results for larger values of 

V%2 and have a modest difference for smaller values of V^ This difference may be due to 

the CMOS model accuracy at the weak inversion region. 
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Figure 2.41: Slave VCO frequency variation due to temperature change 
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Figure 2.42: Slave VCO frequency variation due to temperature change, maximum 
variation required on the slave VCO output is at 1% 
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2.63 Performance improvement with our proposal VCO 

In order to assess the performance improvement with the proposed VCO, the 

frequency drift due to temperature variation without compensation was also measured. The 

block diagram of the VCO is redrawn in Figure 2.43. The temperature compensation network 

was disabled by setting the reference frequency of the PLL far away from the locking 

frequency and by adding a fixed control voltage to the Vctrl. Preferably we would have 

powered down the master VCO and applied a fixed voltage to Vp and Vn of the slave VCO 

but an oversight in the original design precluded this test in out prototype circuits. However, 

the test strategy used should adequately break the control loop. 

Figure 2.44 shows a comparison of the uncompensated VCO with that of the 

compensated VCO. The shift in the frequency of the uncompensated VCO is not of concern 

and is due to the limitation describe above in breaking the loop. It can be seen that the 

uncompensated VCO has a frequency variation of 11% over the 0 °C to 100 °C temperature 

range compared to about 1% for the temperature compensated structure. This represents a 

factor of 10 reduction in frequency drift with the temperature compensated. 
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Figure 2.43: Block diagram of temperature and process compensation VCO in 2 GHz 
implementation 
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Frequency vs. Temperature 
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Figure 2.44: Comparison of frequency drift between the proposed VCO and the 

For uncompensated VCO, both the test results and the simulation results give a 

frequency variation around 10%. The test results give a factor of 10 reduction in frequency 

drift with the temperature compensated and the simulation results give a factor of 20 

reduction. The reason caused the difference is already addressed in section 2.4.3. 

2.7 Conclusions 

A temperature and process compensated VCO, which is designed to operate at 2 

GHz, and whose frequency variation due to incoming data is limited to 1% of its center 

frequency was presented. The simulation results show that the circuit has a frequency 

variation of ±3.33% due to temperature and process changes over fast and slow process 

comers and over a 0°C to 100 °C temperature range. This is a reduction of in excess of a 

factor of 10 when compared to a conventional VCO design. If no process changes are 

presented, simulation results indicated the frequency variation due to temperature change 

only over the 0°C to 100 °C temperature range is around 0.5% compared to the slave VCO 

frequency variation associated with system standards that are often bounded by 1% of its 

uncompensated VCO 
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center frequency. This is a reduction of a factor of 20 reduction in temperature sensitivity 

when compared to the temperature variation of a conventional VCO design. The test results 

show that, without process changes present, the frequency variation due to a temperature 

change over 0°C to 100 °C is around 1.1% of its center frequency. This is a reduction of a 

factor of 10 when compared to the temperature variation of a conventional VCO. A dramatic 

reduction in the required sensitivity of the VCO frequency to the control voltage is thus 

possible, specifically a reduction of over a factor of 10. This will result in a significant 

reduction in jitter in a PLL that uses this VCO in the loop. 
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CHAPTER 3 PERFORMANCE CHARACTERIZATION OF 

CMOS VOLTAGE CONTROLLED RING OSCILLATOR 

3.1 Problem Definition and Motivation 

In Chapter 2, a new design of VCO with process and temperature variation 

compensation is presented. In this chapter and the next chapter, we will focus on the design 

of VCO. The more detailed VCO theory and design considerations will be given. The basic 

delay stage that is used in the previous chapter is redrawn in Figure 3.1. In this delay stage, a 

differential input structure with the current sources paralleled with diode-connected load is 

used to reduce the supply and ground noise. Two controlled voltages V? and V^ provide 

large operation frequency tuning range. Diode-connected PMOS transistors provide common 

mode and swing of the output signal. 

One of the important properties of any VCO is the transfer characteristic, which is the 

relationship between the control voltages and the operation frequency of the output signal. 

Although this delay stage is widely used in the VCO design, the accurate transfer function 

has not been presented yet. In some applications, it is not required that the VCO has a linear 

relationship between the operation frequency and the control voltages. But for almost all the 

applications, the monotonie relationship between the operation frequency and the control 

voltages is necessary. This chapter will provide a detailed analysis about the transfer 

characteristic of the VCO. The results show that the transfer characteristic for the VCO is not 

monotonie, so careful design is suggested to make sure that the VCO operates in the 

monotonie transfer characteristic region. 

3.2 Literature Review 

A ring oscillator consists of a number of delay stages in a loop. Figure 3.2 shows the 

typical block diagram of a ring oscillator. If the delay stage is a single-ended inverter, the 

total number of inverters in the loop must be odd so the circuit does not latch up. If the delay 

stage is a differential stage, the total number of the stages may be even. 
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Figure 3.1: Delay cell in Chapter 2 
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Figure 3.2: The block diagram of a typical ring VCO 

There are many ways to implement the delay stages. Figure 3.3 shows some of 

commonly used delay stages. Figure 3.3a is a single-ended current-starving inverter; it has 

the simplest structure and provides wide operation frequency turning range. Compared to the 

differential structure, it has low device jitter [38] [39], but its performance is limited by the 
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low supply and ground noise rejection. Figure 3.3b is the differential version of Figure 3.3a. 

In Figure 3.3b, the supply and ground noise is rejected as the common mode noise. Figure 

3.3c has a positive relationship between the output swing and operation frequency, and 

consequently has a good SNR at high frequency. It also has a good ground noise rejection 

due to the fact that input and output related to same ground [40]. In Figure 3.3d, Tail current 

source MOS transistor, which is commonly used in ECL-like differential CMOS pair, is 

avoided to reduce the 1/f noise. M3 and M4 constitute a CMOS latch. M5 and M6 control the 

strength of the latch, consequently control the delay. This structure has full swing waveform, 

consequently less noise and large drive capability. The disadvantage is the reduction of the 

maximum operation frequency due to M5 and M6 [4]. Figure 3.3e uses differential structure 

with common source pair inputs and active loads. In Figure 3.3f, PMOS diode M5 and M6 

give a fixed common mode and swing of the output voltage. Compared to Figure 3.3e, it has 

a wide range of operation frequencies and supply voltages. The disadvantage is the reduction 

of the maximum operation frequencies due to the parasitic capacitance of the diode. 

The delay cell shown in Figure 3.3f is widely used in the VCO design. The accurate 

transfer function has not been presented yet. Some designers thought the operation frequency 

is directly proportional to the control voltage Vp, while others thought that the operation 

frequency is reversal proportional to the controlled voltage Vp. In some applications, it is not 

required that the VCO has a linear relationship between operation frequency and control 

voltages. But for almost all the applications, the monotonie relationship between the 

operation frequency and the control voltages is necessary. 

3.3 Transfer Characteristic of the CMOS Ring Oscillators 

The voltage control ring oscillator is a nonlinear oscillator. The design and analysis of 

a nonlinear oscillator are complicated tasks, because transform methods (s-plane) cannot be 

applied directly. Nevertheless, like sinusoidal oscillators, the ring oscillators can be analyzed 

by two steps. The first step is a linear one, and frequency-domain methods of feedback 

circuit analysis can be readily employed. Subsequently, a nonlinear mechanism for amplitude 

control can be provided [41]. The operation frequency of the oscillator is determined in the 

first step, while the swing of the output signal is determined in the second step. 
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Figure 3.4 is the behavior model of a ring VCO. Although in an actual oscillator 

circuit, no input signal will be present, an input signal here is included to help us analyze. Let 

A„(s) be the transfer function of one delay stage, A,(s) be the transfer function of all delay 

stages, and P(s) be the feedback factor. The closed loop transfer function A*(s) is given by 

a ' ( s )= i ± M !U )  ( 3 ' °  

where minus sign is for odd number stages and plus sign is for even number stages. The loop 

gain of the circuit is defined 

= (3.2) 

The characteristic equation thus becomes 

l±l(j) = 0 (3.3) 

According to Barkhausen criterion, at the oscillation frequency (%, the phase shift of 

the loop gain is 2% (for positive feedback) or % (for negative feedback) and the magnitude of 

the loop gain is unity. Thus the condition for the circuit in Figure 3.4 to provide a stable 

oscillation at frequency (% is that 

I(yWo) = A, (_/#(, )A;Wo) = ±1 (3-4) 

In the ring oscillator case, /) = 1. To satisfy Equation (3.4), we have that 

4 (.M,) = IA (_/#o)|Z^ = ±1 (3.5) 

where ^ = ZA, (yd), ), so that 

IA(M)!=I (36) 
^ = 2# or a" 

For the delay cell shown in the Figure 3.3f, the transfer function is that 

<3-7' 

where g^i is the transconductance of the differential input transistor, C is the total 

capacitance at the output node of the delay stage, R is the total resistance at the output node, 

so the total transfer function A,(s) is that 
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Figure 3.4: The model of a ring oscillator, where plus sign is for odd number stages 
and minus sign is for even number stages 

4 (4 = (4, (a))" = 
g ml 

sC + 1/# 
(3.8) 

From Equation (3.8), the amplitude and the phase of the transfer function A,(s) can be 

expressed as 

|4Uw)| = 

f  Y  
8  m l  

C 

ar + 
1 (3.9) 

^ » tan '(-aiRC) 

At the oscillation frequency (0o, the amplitude of the gain equals to unity and the 

phase shift (|) is 2%, so the VCO operation frequency is 
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C 
#0 + 

2 

1 r 2%^ 
tan — 

V M V 
or 

/(C 
tan 

(3.10) 

w 

Equation (3.10) shows that the operation frequency is determined by the stage 

number of delay stages in an oscillator, the total capacitance and resistance at the output node 

of the delay stage. The Equation (3.10) also gives DC gain of the delay stage required for the 

oscillating, for example n=4, the DC gain of the delay stage equals toV2. The total 

capacitance and resistance at the output nodes depend on the operation region of transistors 

in a delay stage. These transistors will operate in three regions as the controlled voltage Vp 

changes. We will analyze the circuit in three cases 

Case 1 : M5 and M6 are in the saturation region. 

Case 2: M5 & M6 are in the triode region. 

Case 3: M5 and M6 are in the cutoff region. 

33.1 Case 1: M5 and M6 are in the saturation region 

If all the transistors are in the saturation region, the input and output swing must be 

less than threshold voltage V%. So small signal model can be used in the analysis. The small 

signal model of the half circuit of the delay cell is shown in Figure 3.5, and gmi is given by 

2ml = (3.11) 

Where 

2L 
fn (3.12) 

Substitute Equation (3.12) into Equation (3.11), 
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m 

8o5 m3 

Figure 3.5: Small signal model of delay cell when all transistors operator at saturation 
region 

2ml = É£k.^L.'^L.{yN _yj 

V 2 4 4 
(3.13) 

Equation (3.13) shows that g^i is proportional to the control voltage 

From Figure 3.5 the resistance and capacitance at the output node are shown in 

Equation (3.14) and (3.15), respectively. 

R  =  ( U  g 0 , ) l l ( \ l  g m 3 ) ~ \ !  g  m 3 

C -  Cgdl + Qw + Cg,3 +  ̂ 3  + ^ bs 5 

(3.14) 

(3.15) 

\ 
2 V p C o x w ,  

L  
C m I ^vji5 ) 

1 

Where gm3 is the transconductance of M3 and go$ is the conductance of M5. 

&m3 = u 
(3.16) 

Where 7^,/ is the current of Ml and 7^ is the current of M5 

_ 
^5 -

2L 
t p  (3.17) 
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Substitutes Equation (3.12) and (3.17) into (3.16) 

= 

l3 4Z. 
fc-Vj 

2 

2L 

(3.18) 

And then substitute Equation (3.18) into (3.14), 

# = 

4/, 

2 

2L 
[vF -vM -vJ  

(3.19) 

Finally substitute Equation (3.19) into (3.10), the operation frequency of the oscillator is 

#o = J2 
k  

A4f  ' 1 ^ ~ V " Ï  

,2 

2Z, 
k-^^kJ)2  

C 
• tan M 

I» J 

(3.20) 

Equation (3.20) shows that the operation frequency is directly proportional to control 

voltage Vn and Vp if all the transistors operate in the saturation region. 

332 Case 2: M5 and M6 are in the triode region. 

The transconductance of the input transistors gmi is the same as that in case 1, but the 

total resistance at the output node is different from that in Case 1. Consider the current 

through Ml (shown in Figure 3.3f ) is 

/ = -

24 
-(Oc -

h  
(y,» - - |%p ^ )" 

(3.21) 

So the small signal impedance r is 

i _ a/ 

Let W3 = x Wg & — ^5 

u  

(3.22) 
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_ _  j W p ^  - % , ) + ( ^  +  l )  | % p | ]  
r lg 

(3.23) 

Substitutes equation (3.23) into (3.10), the operation frequency of the oscillator is 

=_LtanA=l tanA/"^ [L -V )+(% + l) |^|] 
IV C/ VI U W L/r M L, 

(3.24) 

Based on the x value, there are three situations: 

1. x=l, i.e., the active load is a symmetric load, 

!k-V r+KD+U + l) 'K|]  (3.25) 

The frequency is reversal proportional to the control voltage Vp. 

2. x<l, i.e. the size of the diode connect transistor M3 is smaller than that of the PMOS 

current source transistor M5 

Because that V&i-Vo is increased as Vpis increased, so the frequency is also reversal 

proportional to the control voltage Vp. 

3. x>l, i.e. the size of the diode connect transistor M3 is larger than that of the PMOS 

current source transistor M5. 

As Vp is increased, the first term in equation (3.24) is decreased, but the second term 

is increased, so the relationship of the frequency and the control voltage is undetermined. 

333 Case3: M5 and M6 are in the cutoff region 

In this case, equation (3.16) can be rewritten as 

(3.26) 

Substitute Equation (3.12) into Equation (3.26), than 

(3.27) 

The operation frequency of the VCO is given by 
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4 2/7 
k - )" — tan — 

c L » V 
(3.28) 

where n is the stage number of the VCO. 

Equation (3.28) shows that the frequency of VCO is independent on the Vp 

3.4 Simulation Results 

The analysis conclusions are verified by using Hspice simulator. The simulation 

results are based on 0.35 |im CMOS process. 

Figure 3.6 shows the relationship of the operation frequency of the VCO and the 

control voltage Vp. The simulation results show that, if the size of M5 and M6 is larger or 

equal to that of M3 and M4, the whole voltage controlled range can be divided into three 

parts. In part I, the transistors M5 and M6 are in the triode region, and the operation 

frequency is reversal proportional to the controlled Voltage Vp. In part II, M5 and M6 are in 

the saturation region, and the operation frequency is directly proportional to Vp. In part III, 

M5 and M6 are in the cutoff region, and frequency is independent on the Vp. If the size of 

M5 and M6 is smaller than that of M3 and M4, the operation frequency will be directly 

proportional to control voltage Vp in the whole control voltage range. So in order to make the 

VCO have a monotonie relationship of the frequency and controlled voltage Vp, careful 

design is required. 

Figure 3.7 shows the relationship of the operation frequency of the VCO and the 

control voltage Vp and V%. This result shows that the operation frequency of the VCO is 

positive proportional to control voltage V\. By Combining controlled voltage V % and Vp, the 

VCO operation frequency tuning range will be from 1.1 GHz to 2.5 GHz at normal 

temperature and typical process. 
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3.5 Conclusions 

Transfer characterization of VCO is studied in detail. Although most designers 

believe that the relationship of the frequency and the control voltage is a monotonie 

relationship, we find, in most situations, the relationship is based on the design sizes and the 

operation region of the transistors. The Hspice simulation results verified the analysis results. 

Frequency of VCO vs. Control voltage Vbiasp 
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1.5 0 1 2 2.5 3 0.5 

Control Voltage Vbiasp (V) 

Figure 3.6: Frequency of VCO vs. control voltage Vp. where x=Wg/W5. The operation 
region of the PMOS current source is in I: triode, II: saturation, and HI: 
cutoff. 
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Frequency of VCO VS. Control voltage 
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Figure 3.7: Transfer Characterization of VCO (x=12) 
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CHAPTER 4 MAXIMUM THE VCO OSCILLATION 

FREQUENCY 

4.1 Problem Definition and Motivation 

In recent years, there has been a growing interest in very high-speed communication 

circuits. The design of monolithic VCOs in standard CMOS processes has been the subject of 

several research efforts. Voltage controlled ring oscillators have relative good jitter 

performance, large tuning range, monolithic solution, and are low cost. They are widely used 

in the high-speed communication circuits. Most existing strategies for design of VCOs have 

been directed at applications where the frequency of oscillation is well below the ft of a 

process. In this chapter, we will focus on the impact of layout, load selection and stage gain 

on high frequency operation. 

4.2 Literature Review 

There are two commonly used Voltage Controlled Oscillators which have frequencies 

in GHz range, LC tank oscillators and ring oscillators. In CMOS techniques, the LC tank 

oscillators are the ones that can reach highest frequency. The reported highest LC oscillator 

operation frequency in CMOS process is 50 GHz [42]. Other LC oscillators with operation 

frequency at GHz are often reported recently [43] [44]. However, LC oscillators have some 

disadvantages. For example, small tuning range, no high quality on-chip inductor, and large 

chip area occupied make the LC tank unattractive in some applications. On the contrary, ring 

oscillators can be easily integrated on-chip without any extra processing steps. More 

important in the industries, ring oscillators normally occupy less chip area, which improves 

both the yield and the cost. Typically, the operating frequency of the voltage controlled ring 

oscillators is slower than the LC oscillators. The recently reported highest frequency is 2.8 

GHz in 0.35 |im CMOS process [45]. 
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43 VCO Design Theory 

One common structure for the delay cell of a ring oscillator is shown in Figure 4.1. In 

this structure, the delay of the cell is a function of the transconductance per unit capacitance 

of the input transistors and the active loads. 

In order to maximize the operating frequency, the output swing of VCO is usually 

kept small. In such situations, the VCO frequency can be obtained by using a small signal 

model. Figure 4.2 is the simplified small signal model of the delay cell. In Figure 4.2, gmi 

and go# are the transconductance of the input transistors and the load transistors, respectively, 

and C is the total capacitance seen by the output node. The capacitance C is the sum of the 

diffusion capacitance on the drain of Ml, M3, the load capacitance C^ and the gate 

capacitance of the next stage which is essentially CoxWiL] where Wi and L, are the width 

and length of Mi. 

The transfer function of the delay stage, assuming loading by an identical stage is: 

(4.1) 

Figure 4.1 : Delay cell of the ring oscillator 
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Q V out 

Figure 4.2: The small signal model of VCO delay cell 

Since ideally every stage has the same transfer function described by Equation (4.1), 

the characteristic polynomial of the closed loop of an n stage VCO is 

D ( s )  =  ( s  +  g m 3 / c y  +  ( - g m l / c y  , 4 . 2 )  

From (4.2) it follows that the pole locations are: 

* § m l  8 m 3 ^ = (-1)' 

= ± cos( ̂  / ») * ± y * sin(^ / ») * 

C C 

c c 
g m l  

C (4.3) 

= # + y * ^ 

where a is the damping factor of the loop and (3 is the natural frequency of the loop. 

At the onset of oscillation, at least one pair of poles must be located in the right half 

plane (RHP). The poles move towards the left half plane (LHP) as the loss increases. It can 

be shown that the output waveform is a pure sinusoid when right-most pair of poles is located 

on the joo axis. In this structure, the damp factor of the loop a, becomes zero. From (4.3) it 

follows that 

COS^T/fz)* 
S ml Sm3 

c c 
To sustain oscillation, the pole must be kept on the j(0 axis. 

(4.4) 
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Figure 4.3 shows the pole locations of the VCO under the condition that gm3 is 

established to maintain the damping factor of the right-most pole pair at zero. Under this 

condition the oscillation frequency of the VCO is 

(0 = (3 = 7C / n ^g) 

Substituting (4.4) into (4.5), the frequency of the VCO can alternately be written as 

# = cot (#/%)* (4 6) 

f jO)  

Figure 4.3: The pole location of a 4-stage VCO. 

In Equation (4.5) and (4.6), gmi is the transconductance of the input transistor Ml. gmi 

is proportional to the square root of the bias current of the input transistor. gm3 is the 

transconductance of the load transistor M3. gm3 is proportional to the square root of the bias 

current of the load transistor. 

From (4.5) and (4.6), the strategy for the design of a high speed VCO is apparent. 

These can be summarized: 

* Minimize the total capacitance seen by the output node. 

* Maximize the transconductance per unit capacitance (gm/c) for the input transistors 

and load transistors. 

* Minimize the stage number n. 
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4.4 High Speed VCO Design Techniques 

Most existing strategies for design of VCOs have been directed at applications where 

the frequency of oscillation is well below the f, of a process. At higher frequencies, some 

luxuries afforded the designer tend to limit the oscillation frequency potential of a process. In 

this section, we will focus on the impact of layout, load selection and stage gain on high 

frequency operation. 

4.4.1 Method 1: Layout techniques for frequency enhancing 

The total capacitance seen at the output node and the transconductance per unit 

capacitance are dependent upon both the process parameters of a given process and the 

layout of the delay stage. Although layout is not critical for low speed oscillations, it plays an 

important role in the design of VCOs that are designed to operate at frequencies that 

approach the f, of a process. In this subsection, the effect of layout on the frequencies of 

operation is discussed. 

From Equation (4.5) and (4.6), it is apparent that one efficient way to increase the 

VCO frequency is to minimize the capacitance seen by the output node. This will be 

minimized when only parasitic and required loading capacitance of the following stage are 

included. The size of this capacitance is highly layout dependent. 

Consider the conventional layout structure shown in Figure 4.4. Following the design 

rule in a typical CMOS process, the minimum diffusion area of the source and the drain are: 

A = Dram Area = Sowrce Area = (4.7) 

where k is a scale factor associated with the process that is typically half of the minimum 

allowable drawn gate length and W is the drawn width of the transistors. Correspondingly, 

the drain periphery and source periphery are given by 

(4.8) 

In the submicron process, the diffusion capacitance typically dominants the total node 

capacitance C in a ring oscillator. Thus minimizing the drain or source area will help to 

increase the VCO operating frequency. 

For the conventional layout of Figure 4.4, it follows that the total capacitance C seen 

on the output node is given by 
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C -  + ^ ( ^ + ^ 3 )  +  Qor (^01 + ^D3) (4.9) 

where Co% is the gate oxide capacitance density, W, and L% define the channel geometry of 

Mi, Pi and P3 are the periphery of the drains of Mi and M3 respectively, Aoi and Ans are the 

drain areas, and where Cgw and Cgor are the sidewall and bottom capacitance densities 

respectively. 

In our research, an alternative layout technique is presented. Figure 4.5 shows the 

concentric parallel cell layout. It is assumed that every transistor can be divided into k 

parallel cells, where k is an integer greater than or equal to 1. For every cell, the width and 

length are approximately 32X and 2A,, respectively. Assuming the capacitance sensitive node 

is the drain and the drain is at the inside of the cell. It follows that the area and periphery of 

the drain and source are given respectively by 

A# = 

P p  =  2 4  A  

Aj = JOOf 

fs = 40A (4.10) 

Figure 4.4: Conventional layout structure 
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Let us examine a simple example. Consider a transistor with a width of 64k, and a 

length of 2X. If the conventional layout structure is used, its drain area is 320A?, and the 

periphery is 74A,. If the concentric parallel cell layout is used, the drain area is only 72A? and 

the drain periphery is 48k. If used in a VCO, this reduction in diffusion capacitance will 

cause the VCO operating frequency increase substantially. 

Table 4.1 compares the VCO frequency for a conventional layout and the concentric 

layout for a 0.35 |im CMOS provided through the MOSIS service by Hewlett Packet. In this 

table, we selected W%=150k, L,=2X and k for the load device from 2 to 6. 

Form the simulation results, we can see that the improvement of the VCO frequency 

is about 23% by using the concentric layout technique. 

20 X  

W = 3 2 X ,  L = 2  X  

Figure 4.5: Concentric parallel cell layout 
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Table 4.1: The Influence of Different Layout 

Width of load VCO freq. convention VCO freq. Concentric 

transistor(jim) layout(Hz) layout 

PMOS 12.8 2.3G 2.8G 

as 19.2 2.7G 3.3G 

active 25.6 3G 3.7G 

load 32 3.2G 3.9G 

38.4 3.4G 4.1G 

4.4.2 Method 2: Frequency enhancing with the NMOS load 

In the conventional differential delay stage, NMOS transistors are used as the input 

drive transistors and PMOS transistors are used as the active loads. From the discussion in 

Section 4.3, we know that the VCO frequency increases with the transconductance per unit 

capacitance (gm/C) of the active load. Since the NMOS transistor has larger mobility than 

the PMOS transistor, the transconductance per unit capacitance of the NMOS transistors is 

larger than that of the PMOS transistors. So in order to further increase the VCO frequency, 

NMOS transistors are used as the active loads. Figure 4.6 is the schematic of the modified 

delay stage. 

M4 

Vo-
Vo+ 

Vi-

Figure 4.6: Delay cell using NMOS active load 
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Table 4.2 compares the VCO frequency at different active load for the conventional 

layout of Figure 4.4. In order to make a fair comparison, the size of the input transistor was 

Axed to Wi=150X and L]=2X. 

From the simulation results, we can conclude that using NMOS transistor as the 

active load can increase the VCO frequency, provided that other conditions are kept the same 

as those when the PMOS transistor was used as the active load. 

4.43 Method 3: Frequency enhancement combining method 1 & method 2 

Table 4.3 shows the results by combining layout technique and load selection 

technique. From these results, a 4.8 GHz high operation frequency VCO is obtained using the 

HP 0.35|im CMOS process. 

Table 4.2: The influence of the different load 

active load 

size (W) 

VCO freq. @ PMOS as active 

load 

VCO freq. @ NMOS as active load 

25À N/A 2.4GHz 

50X 2.45GHz 3.5GHz 

751 2.75GHz 4.2GHz 

Km 3GHz N/A 

Table 4.3: The frequency enhancing using method 1 & method 2 

Width of load transistor (|im) VCO freq. with Concentric layout 

6.4 3.3G 

12.8 4.7G 

15 4.8G 
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4.5 High Frequency VCO Design 

A high frequency voltage control ring oscillator based upon NMOS loads with all 

transistors using concentric layout has been designed. Emphasis was placed on maximizing 

the speed of operation while still maintain quadrature outputs. The quadrature output 

criterion restricted the minimum value of n to 4. (With a complicated phase compensation 

circuit, two or three stages VCO with quadrature outputs also be reported recently [46][47].) 

The designed VCO is a 4-stages structure with Ws=270A, W,=W2=150X, W3=W4=50X and 

all L= 2A, Simulation results based on 0.35|im CMOS process are shown in Figure 4.7. From 

these simulation results, it can be shown that the frequency can be as high as 4.85 GHz. If the 

quadrature output requirement was sacrificed, further enhancement of the oscillation 

frequency can be achieved by reducing the number of stages to 3 or, with appropriate 

modifications, to 2. 

4.6 Conclusions 

In this chapter, a high frequency ring VCO design has been presented. This design 

achieves frequency enhancement through minimization of diffusion parasitic capacitance 

with concentric layout and the transconductance density optimization. A 4-stage VCO 

designed in a 0.35|im CMOS process can operate in the frequency of 4.85 GHz. 

VCO frequency vs. control voltage 

_ 4.9 

3.7 
3.5 J 

1.1 1.2 1.3 1.4 

control voltage (V) 

1.5 

Figure 4.7: VCO frequency vs. control voltage 
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CHAPTER 5 HIGH FREQUENCY VCO-DERIVED FILTERS 

5.1 Problem Definition and Motivation 

In the past decades, integrated continuous-time filters have been successfully 

employed in a variety of applications ranging from low frequency to high frequency. In a 

wireless communication system, the operation frequency will be higher than 1 GHz. 

Attempts to reach higher operation frequencies have met with serious difficulties, related to 

the active-RC or g^-c approaches. 

It is well known that CMOS voltage controlled oscillators are capable of operating at 

very high frequencies. While reported continuous-time CMOS monolithic filters are 

invariably limited to operating frequency that are much lower than the reported oscillation 

frequencies of VCOs designed in the same process. By introducing additional loss in the 

delay stage of a VCO to move the poles into the left half-plane and appropriately introducing 

signal inputs into the resultant structure, monolithic filters that have operation frequencies 

comparable to the oscillation frequency of the VCO can be derived. 

5.2 Literature Review 

Integrated analog filters can be classified into two categories: continuous-time filters 

and discrete-time filters. Continuous-time filters are capable of operating at higher frequency 

than the discrete-time filters but this often cost linearity and noise performance. However, 

there are many applications in the areas of direct signal processing in which the distortion 

and noise performance requirements are relaxed [48]. A good example of an appropriate 

application of continuous-time filters in direct signal processing is the read channel of disk 

drives [49] [50]. Other applications for direct signal processing include wireless 

communication systems [51], and loop filters for phase-locked loops [52]. The operation 

frequency of the continuous-time filters in these applications varies from a few hertz (for 

loop filters) to hundreds of Megahertz (for disk drive read channels), and even to a few 

Gegahertz (in wireless applications). The dynamic range of these filters varies from 40 to 

70dB. 
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In the continuous-time filter domain, gm-C filters offer a speed advantage over active 

R-C and MOSFET-C Alters. The basic building block of gm-C filter is an integrator involving 

a transconductor and a capacitor or a bank of capacitors. The frequency of g,„-C filter is 

proportional to the unit-gain frequency of the integrator, which is much higher than the 

bandwidth of OP AMP used in the active R-C or MOSFET R-C filters. 

For Alters with frequency higher than 1 GHz, L-C filters are usually employed [53]-

[55]. L-C filters often need external inductors. Recently, the technique of fully integrated 

spiral inductor on chip substrate makes the monolithic L-C filter possible. But due to the 

parasitic effects, only low-quality inductors can be achieved. On the other hand, the inductors 

on chip occupy a substantially larger area, and this decreases the yield and also increases the 

fabrication cost. An alternative way to make an inductor is using the bonding wire. This 

technique increases the quality factor of the LC tank, but it is not accepted in the industry due 

to the lack of yield repeatability. 

Reported continuous-time CMOS monolithic filters are invariably limited to 

operation frequency that are much lower than the reported oscillation frequencies of VCOs 

designed in the same process. In high frequency voltage ring oscillators, operation frequency 

is proportional to g^/c, where gm is the transconductance of driving transistor, and c is the 

output node parasitic capacitance in the delay stage. Comparing to gm-C filter, the parasitic 

capacitance in the delay stage of the VCO is much less than the load capacitance in the 

integrator of the filter. So VCO has the potential to operate faster than the g^-c filter. 

53 VCO-Derived Filter Design 

A ring voltage controlled oscillator is generally realized by cascading an odd number 

of open-loop inverting amplifiers (often termed "delay stages" when used in VCOs) in a 

feedback loop or a "ring". An even number of delay stages can also be used provided that an 

odd number of amplifiers in the ring are noninverting. The amplifiers have signal 

propagation delay approximately half of the period of the oscillation frequency. These delay 

stages are often simply integrators which invariably have some loss either introduced 

intentionally or attributable to the non-zero output conductance of the MOS transistors. In 

some VCO s, feedback or control mechanisms are used to control this loss which affects both 
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the waveshape and frequency of the VCO output signal. The small-signal pole locations of 

the VCO are dependent on the amount of loss in the delay stages with a requirement that at 

least one complex-conjugate pole-pair be in the right half-plane to sustain oscillation of the 

VCO. If too much loss is added in the delay stages, oscillation will cease and the VCO will 

behave as a filter if signal inputs are added appropriately. 

In the filter terminology, the delay stages are generally termed lossy integrators. In 

this chapter, we will use the word "integrator" and "lossy intergrator" in both VCO and filter 

cases. The lossy integrators generally have dominantly a first-order small signal transfer 

function with the transfer function given by 

Where I*, is the unity-gain frequency, and pole p is the loss term. 

It can be shown that an n-stage VCO constructed with identical lossy integrators has 

poles on a circular constellation located at 

The location of the pole constellation of the system can be controlled by modifying 

the amount of integrator loss. Increasing the loss pushes the pole constellation leftward in the 

s-plane while reducing the loss will move the constellation rightward. Thus by appropriately 

controlling the loss, the poles can be placed in the LHP ensuring a stable system. Figure 5.1 

illustrates a 3-stage VCO s pole constellation with and without additional loss. 

Based on this concept, a VCO-deiived low-pass filter can be designed by moving the 

pole constellation by the proper amount to the left and adding an external input to one of the 

lossy integrators. Figure 5.2 shows the block diagram of the 3-stage VCO-derived low-pass 

Alter. Where V? and V&, are the control voltages, Vj+, V,_ are the inputs and V*+, Vo_ are the 

outputs. 

The transfer function of this low pass Alter is 

(5.2) 

n 
(5.3) 
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filter 

oscillator 

Figure 5.1: The poles location of the 3-stage oscillator (without additional loss) and 
filter (with additional loss) 

This can be expressed as 

X. 9 £$() -> 
s" + —j + w; 

6 

(5.4) 

For high Q poles, the transfer function can be approximated by the second-order 

function 

X, 
+ —3 + 0ÙQ e 

(5.5) 
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Figure 5.2: The diagram of the 3-stage VCO-derived low-pass filter 
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A band-pass filter can be created by adding a zero near the origin. One way to 

achieve this is by making the last integrator stage lossless and obtaining the filter's output 

from the second last stage. The block diagram of a 3-stage band-pass filter is shown in 

Figure 5.3. 

The band-pass Alter transfer function can be approximated by a second-order function 

5.4 Components Design 

To implement a low-pass VCO-derived Alter, a lossy integrator with summing inputs 

and a lossy integrator without summing inputs are required. The band-pass Alter 

implementation requires a lossless integrator in addition to the two integrators required in 

low-pass Alters. To achieve low noise and distortion, the fully differential structures are used. 

These integrators will be discussed next. 

5.4.1 Lossless integrator 

A lossless or low lossy integrator is required to implement the band-pass Alter in 

order to provide a zero at the origin. A widely usage VCO delay stage that is actually a low 

loss integrator is shown in Figure 5.4. M1-M5 form the core of a lossless integrator and M6-

M13 form the common mode feedback circuit. Due to the non-inAnity impedance of the 

current source formed by M3 and M4, the zero of the band-pass Alter will not exactly on the 

origin. Table 5.1 shows the transistors sizes of the lossless integrator in the band-pass Alters. 

5.4.2 Lossy integrator 

The widely used VCO delay stage that behaves as a lossy integrator is shown in 

Figure 5.5 Compared to the low-loss integrator, the lossy integrator has a pair of diode 

connected active loads paralleled with the PMOS adjustable current source. The controlled 

voltages, which are used in a VCO to control the frequency of oscillation, V„ and V? control 

the unity-gain frequency and the loss of the integrator. In low-pass Alter, in order to increase 

(5.6) 
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the cutoff frequency of the filter, M3 and M4 are removed to decrease the output node 

capacitance. Table 5.2 and Table 5.3 show the transistors sizes of the lossy integrator in the 

low-pass filter and band-pass Alter, respectively. 

5.43 Lossy integrator with summing inputs 

A lossy integrator with summing inputs was constructed by adding an additional input 

pair to the lossy integrator shown in Figure 5.5. The resultant schematic is shown in Figure 

5.6. Again, M3 and M4 in the low-pass Alter are removed to increase the cutoff frequency. 

Table 5.4 and Table 5.5 show the transistors sizes of the lossy integrator with summing 

inputs in low-pass and band-pass Alter, respectively. 

Table 5.1: The transistors sizes of the lossless integrator in the band-pass Alter 

Wl/Ll W2/L2 W3/L3 W4/L4 
14u/250n 14u/250n 18u/250n 18u/250n 
W5/L5 W6/L6 W7/L7 W8/L8 

40u/250n 40u/250n 40u/250n lu/250n 
W9/L9 W10/L10 Wll/Lll W12/L12 
lu/250n 4u/250n 4u/250n 28u/250n 

W13/L13 W14/L14 W15/L15 W16/L16 
28u/250n 10u/250n 40u/250n 1 u/250n 

Table 5.2: The transistors sizes of the lossy integrator in low-pass Alter 

Wl/Ll W2/L2 W5/L5 W6/L6 W7/L7 
18u/250n 18u/250n 35u/250n 35u/250n 60u/250n 

Table 5.3: The transistors sizes of the lossy integrator in band-pass Alter 

Wl/Ll W2/L2 W3/L3 W4/L4 
14u/250n 14u/250n 30/250n 30u/250n 
W5/L5 W6/L6 W7/L7 
6u/250n 6u/250n 40u/250n 
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Figure 5.3: The diagram of a 3-stage VCO-derived band-pass filter 
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Figure 5.4: The schematic of low loss integrator for band-pass filter 
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M5 M6 M4 M3 

'Vo- Vo+' 

M2 Ml 

M7 

Figure 5.5: The schematic of the lossy integrator 

Using the integrators shown in this section, it can be shown with a tedious derivation 

that the Q and % of a low-pass or band-pass filter can be expressed as 

1 - 2  c o s  0 

6 = 

m 5 

m l  
+ S m  S 

S ml J 
f 

(5.7) 

cos 0 m 5 

ml J 

• m  1 
C ,  

|l-2cos^ 
» ml 
+ S m 5 

S ml J (5.8) 

Where gmi and gm5 are the transconductances of Ml and M5 in Figure 5.6: The schematic of 

the lossy integrator with summing inputs., respectively, is the total capacitance on the 

output node of the integrator and where 8 is a constant depending on the number of delay 

stages in the parent VCO which in this example is assumed to be three. For the three-stage 

oscillator, 8=60°. 
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Table 5.4: The transistors sizes of the lossy integrator with summing inputs in low-pass filter 

Wl/Ll W2/L2 W5/L5 W6/L6 
18u/250n 18u/250n 35u/250n 35u/250n 
W9/L9 W10/L10 W7/L7 

36u/250n 36u/250n 60u/250n 

Table 5.5: The transistors sizes of the lossy integrator with summing inputs in band-pass 
filter 

Wl/Ll W2/L2 W3/L3 W4/L4 
14u/250n 14u/250n 30u/250n 30u/250n 
W5/L5 W6/L6 W7/L7 W9/L9 
6u/250n 6u/250n 40u/250n 14u/250n 

W10/L10 
14u/250n 

M5 M3 M6 M4 

M2 Ml 

M7 

Figure 5.6: The schematic of the lossy integrator with summing inputs. 
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5.5 Simulation Results 

The circuit was designed for the TSMC 0.25|im process and was simulated using the 

Hspice simulator. 

5.5.1 Low-pass filter 

A low-pass filter with a -3 dB bandwidth of 4.3 GHz at normal process comer and 

normal temperature was designed. The AC and transient response are shown in Figure 5.7 

and Figure 5.8 respectively. Figure 5.9 shows the frequency spectrum of the output signal 

with a single-end output swing of 200 mV and a frequency of 3 GHz. The THD is around -

40dB. 

5.5.2 Band-pass filter 

A band-pass filter with a center frequency that is tunable from 2.28 GHz to 3.11 GHz 

and a Q factor that is adjustable from 3 to 85 was also designed. The performance of the 

designed band-pass filter is summarized in Table 5.6. The AC responses of a sample band­

pass filter with a Q of 5 and a center frequency of 2.3 GHz is shown in Figure 5.10. 

Figure 5.11 shows the transient response of above band-pass filter excited by a sinusoid 

signal with a frequency of 2.3 Ghz and a single-end output swing around 80mV. Figure 5.12 

shows the frequency spectrum of the output signal with the single-end output swing of 80 

mV. It exhibits a THD of -40dB. 

N 
\ 

B: 4.38 GHZ, -3dB \ 

\ 

\ 

N 
1M 10M 100M IG 10G 1000 

Frequency (Hz) 

Figure 5.7: The AC response of a sample low-pass filter 
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Figure 5.8: The transient response of the low-pass filter in Figure 5.7 
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Figure 5.9: The frequency spectrum of the low -pass filter, single-end output swing is 
200 mV. 
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Figure 5.10: The AC response of a sample band-pass filter. 

10G 

1.69 

1.67 

^ 1.65 

£ 
ô 1.63 

1.61 

1.59 
93.6n 

V \ I v 
95.5n 

Time (s) 

Figure 5.11: The transient response of the band-pass filter with a 80mV single-end 
output swing. 
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Figure 5.12: The frequency spectrum of one band-pass filter 

5.6 Conclusions 

A method of designing monolithic filters derived from CMOS VCOs was introduced. 

A sample of the VCO-derived low-pass filters and a sample of the band-pass filters were 

presented. A low-pass filter with a cut-off frequency of 4.3 GHz was designed in the TSMC 

CMOS 0.25 pm process. It exhibits a THD of - 40dB with a 200mV single-end output 

swing. A band-pass filter with a center frequency tunable from 2.28 GHz to 3.11 GHz and a 

Q adjustable from 3 to 85 was also designed. It exhibits a THD of -40dB with an 80mV 

single-end output swing. The VCO-derived filters offer two main advantages over other 

types of integrated CMOS filters: higher operation frequency, and a higher and easily 

adjustable Q. VCO-derived filters offer potential for use in modem communication circuits 

that require modest distortion performance. 
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Table 5.6: Simulated performance of the designed band-pass filter 

Vn (V) Vp (V) Oûo(GHz) Q 
0.7 2 2.28 5.0 0.7 

1.8 2.29 6.1 

0.7 

1.6 2.33 14.3 

0.7 

1.525 2.34 27.0 

0.7 

0 2.34 52.0 

0.8 2 2.74 3.1 0.8 

1.8 2.75 3.4 

0.8 

1.6 2.81 4.0 

0.8 

1.4 2.81 5.7 

0.8 

1.2 2.85 11.9 

0.8 

1.05 1.88 84.6 

0.9 2 2.99 2.4 0.9 

1.6 3.03 2.6 

0.9 

1.4 3.05 2.9 

0.9 

1.0 3.10 4.3 

0.9 

0.6 3.11 7.2 

0.9 

0.2 3.11 8.6 

0.9 

0 3.11 9.2 
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CHAPTER 6 CURRENT MIRROR CIRCUIT WITH 

ACCURATE MIRROR GAIN FOR LOW g TRANSISTORS 

6.1 Problem Definition and Motivation 

The current mirror is one of the most basic building blocks used in linear IC design. 

Although CMOS process have become dominant in applications requiring a large amount of 

digital circuitry on a chip, BJT circuits in either Bi-CMOS or bipolar processes remain 

popular for high-speed applications due to the very high unity-gain frequencies attainable 

with modem bipolar transistors. Unfortunately, in bipolar transistors, the base control 

terminal draws a nonzero input current. Specially, for lateral transistor, the base current in 

some processes may be as large as 20% (for P = 5) of the collector current. In a simple 

bipolar current mirror with (3 = 5, the base current will cause a 30% error in current mirror 

gain. There are several known approaches for minimizing the base current effects. Most are 

suitable for high P transistors where the detrimental effects of base current loss on mirror 

gain are already modest. For low (3 transistors, most existing methods show either poor 

accuracy or poor frequency response. 

In this chapter, a new approach for designing bipolar current mirrors is presented. The 

new current mirror has smaller gain errors due to base current loss than previously reported 

structures and is most beneficial when an accurate mirror gain is required from low p 

transistors. The new current mirrors can be implemented in bipolar or Bi-CMOS processes 

or in CMOS process with the parasitic bipolar transistors. 

6.2 Literature Review 

A simple bipolar current mirror structure is shown in Figure 6.1 [56]. In this structure, 

a constant current source is fed into the collector of the diode-connected transistor Q1 

establishing a voltage across the base-emitter junction of Ql. This voltage is applied across 

the base-emitter terminals of Q2. If Ql and Q2 are matched, the emitter currents of Ql and 

Q2 will be the same. If the base currents of Ql and Q2 are negligibly small, it follows that 
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the output current will be the same as the input current. If the base currents are not 

negligibly small, this current mirror has an output current /ou, that is smaller than the input 

current because a current whose value is equal to the sum of base currents of Ql and Q2 is 

subtracted from the input current before it reaches the collector of Ql. Taking these two base 

currents into account and assuming Ql and Q2 are perfectly matched, the current mirror gain 

is given by 

1 X — ^ out 

1 + -
(6.1) 

where p is the transistor current gain of Ql and Q2. 

The current mirror gain error is defined by the expression 

GamError = 
A-A. 

4. 
x!00(%) (6.2) 

I out 

Q2 

Figure 6.1 : The simply bipolar current mirror 
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For lateral transistors, P is often in the range of only 4 to 20. For such transistors, the 

current mirror gain error is too large for most applications. For example, the current mirror 

gain error from Equation (6.2) will be 30% if /? = J. 

A well-known modification of the simple current mirror that partially compensates 

for base current loss is shown in Figure 6.2. An emitter-follower buffer, Q3, is included 

between emitter and base of Ql. The sum of the base currents of Ql and Q2 is divided by 

(P+l) of Q3 resulting in a smaller current that has to be subtracted from the input current /»,. 

Assuming /%=/%=/%=/% then the current mirror gain of the circuit in Figure 6.2 is given by 

A = -̂ - = L ==-  ̂

-
For /%=3, the current mirror gain error will be around 7%. 

To further minimize the base current effect, the Darlington configuration can be used 

to achieve a larger current gain in the feedback amplifier. The current mirror structure based 

upon the Darlington compensation is shown in Figure 6.3. For this structure, the sum of the 

base currents of Ql and Q2 is divided by / resulting in a much smaller current that has 

to be subtracted from the input current Again assuming all the transistors are matched, the 

current mirror gain is given by 

X _ ^out _ 1 _ ~ 1 

/.... J , 2 -1 , 2 (6.4) 
m 

j 3 , + 2 f i , + j 3  f  

For /?=5, the current mirror gain error will be about 1.6%. 

Although this structure does offer improvements in mirror gain accuracy, this current 

mirror has a poor high frequency response due to the fact that base current of Q3 is small and 

it takes long time to charge the parasitic capacitances at the base of Q3. 
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out 

Figure 6.2: A current mirror with an emitter-follower buffer to provide base current 
compensation. 

In 

O 
1 

& 

Qi> 
H\Q 3  

lout 

KQ2 

Figure 6.3: A current mirror with Darlington configuration to compensate for the base 
currents 
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In the BiCMOS processes, an NMOS transistor can be added to compensate for the 

base currents [10]. The simple structure is shown in Figure 6.4. If Ql and Q2 are perfectly 

matched, this current mirror has an output current exactly equal to the input current due 

to the fact that no base current is subtracted from the input current. Unfortunately, the MOS 

transistor is not available in standard bipolar processes. 

A bipolar transistor with a split-collector can be used to improve the current match 

between the input and output of the current mirror [11]. The split-collector current mirror 

structure is shown in Figure 6.5. A single split-collector transistor Q4 is used in this structure. 

The emitter of Q4 is connected to the common base of the transistors Ql and Q2, the base 

terminal of Q4 is connected to collector of Q2, and one part of the split collector of Q4 is also 

connected to the collector of Q2. The other part of the split collector is directly connected to 

output. The cascoding transistor Q3 provides a high impedance at the output node and also 

provides a compensation current to /#. A routine analysis shows that the current mirror gain 

is given by the expression (6.5) 

Figure 6.4: A current mirror with a MOS transistor to compensate for the base current 
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out 

1-8 

1:M 

Figure 6.5: A current mirror with a split-collector BJT to compensate for the base 
currents 

A = hm 1 + P (l + P)" 0 + PÎ (6.5) 

i+/g o+/?y 

where M is the ratio of the emitter areas of Q2 to Ql and 8 is the collector current split 

factor. For M=1 and 8=1/2, the mirror gain expression of (6.5) reduces to 

A = Y= ( 'Y ) ]  (6.6) 

' + M 

For J, then the mirror gain error is about 0.92%. 
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Although the split-collector mirror gain is much more accurate than what is 

achievable with either the basic mirror or the base current compensated structure from Figure 

6.2-6.4, this mirror can get good current matching only when M is 1. For mirror gains larger 

than 1, the first-order terms of the numerator and denominator in Equation (6.5) no 

longer disappear and become dominant resulting in a large error in the mirror gain. For 

example, when M=2, the mirror gain error is around 30% for /?= .5. 

63 Proposed Current Mirror 

A new current mirror structure is shown in Figure 6.6. In this structure, the base 

current loss is compensated by ideally subtracting a corresponding current from the output 

current. To achieve this, one split collector of Q3 is directly connected to the output and the 

other split collector is connected to the emitter of Q4. Part of the collector current is divided 

by of Q4 and then subtracted from /„u,. Assuming that all transistors have the same (3, 

the current mirror gain is given by 

1 , (1 + M) 
/ _ (1 + /?) M 

(i-e)+ * 
(6.7) 

where M is the ratio of the emitter areas of Q2 to Ql. It follows from (6.7) that the current 

mirror gain is exactly equal to M when 0 = ^ ^ ̂ - M has to be smaller than P to 

satisfy the condition of 0<8<1. 

Due to process variations, the value of |3 may be different from its nominal value. 

Table 6.1 shows the current mirror gain error for the new circuit due to process variations of 

± 20% and ± 30% for several different mirror gains and several different nominal p. 

From Table 6.1, it is apparent that the mirror gain error is higher for lower P and 

higher M. For M=7 and the gain error is 1.28%, which is comparable to Mesa's work 

[11]. For mirror gains greater than 1, the proposed current mirror gives much smaller mirror 

gain errors than the circuit shown in Figure 6.5. 
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Figure 6.6: A current mirror with a split-collector transistor to compensate for the 
base currents 

Two issues of concern when designing any current mirror are the mirror gain 

accuracy and the output impedance of the current mirror. Multiple output current mirrors are 

also required in some applications. Two modifications of the basic circuit shown in Figure 

6.6 will be discussed. One version has a high impedance output and another has the multiple 

outputs. Both have good current mirror gain accuracy even with the low values of (3. 

6.4 Proposed Current Mirror with High Output Impedance 

To increase the output impedance, a cascode version of above design is introduced. 

This current mirror has higher output impedance and better current matching. Figure 6.7 

shows the modified current mirror structure. Various known methods can be used to generate 

the bias voltage, Vy^s which is used to bias the cascode transistors. 
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8 + 
1 , (l + M) ^ 

4 _ P' M 
7™ M 

P2 

1 - 8  

W). 
(6.8) 

The current mirror gain is exactly equal to M when #_(!+/?) M-/). M should be less 

than (3 and greater than p/(l+p) to satisfy the condition of 0<8<1. 

Similar to the design in Figure 6.6, process variations of P will result in a modest 

mirror gain error. The mirror gain error due to (3 variation is shown in Table 6.2. 

Table 6.1: Current mirror (Figure 6.6) gain error due to process variation of p. 

P M Mirror (Figure 6.6) gain Error (%) P M 

-20% +20% -30% +30% 

15 13 1.63 0.78 3.09 1.00 

9 1.16 0.54 2.20 0.70 

5 0.65 0.30 1.25 0.39 

1 0.04 0.01 0.07 0.02 

10 9 2.40 1.19 4.50 1.55 

5 1.40 0.67 2.65 0.87 

1 0.11 0.04 0.22 0.05 

5 4 3.84 2.04 6.95 2.67 

3 2.98 1.54 5.45 2.01 

2 1.98 0.99 3.68 1.29 

1 0.65 0.29 1.28 0.36 
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From Table 6.2, we can see that, the worst case mirror gain error is 8.36% for (3=5 

and M=4. For M=1 and p=5, the error is 1.59%, which is slightly larger than what was 

achievable with the previous design. 

6.5 Proposed Current Mirror With Multiple Outputs 

To have multiple outputs, the current mirror shown in Figure 6.7 can be modified to a 

mirror with multiple outputs as shown in Figure 6.8. 

If the mirror gain from the input to the outputs is nominally unity, the current mirror 

gain is given by the expression 

Table 6.2: Current mirror (Figure 6.7) gain error due to process variation of (3. 

p M Mirror (Figure 6.7) gain Error (%) p M 

-20% +20% -30% +30% 

15 13 1.76 0.82 3.35 1.05 

9 1.25 0.57 2.39 0.74 

5 0.70 0.32 1.36 0.41 

1 0.56 0.014 0.08 0.02 

10 9 2.68 1.29 5.03 1.66 

5 1.56 0.73 2.99 0.93 

1 0.12 0.05 0.25 0.06 

5 4 4.57 2.23 8.36 3.04 

3 3.57 1.77 6.62 2.29 

2 2.40 1.14 4.52 1.47 

1 0.80 0.33 1.59 0.42 
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(6.9) 
^ in ^ in , JV + I 

1 + —— 

where N is the number of outputs of the current mirror. 

The nominal current mirror gain is given by Equation (6.8) 

The mirror current gain exactly equals to 1 if 

y = — 
(6.10) 

To keep all branch current of emitter of Q5 positive, i.e., 

—— ^ > 0 a/W ^ > 0 
N 

(6.11) 

From (6.10) and (6.11), the maximum number of outputs N has to be less than (S-l. 

6.6 Conclusions 

A new current mirror design based on a split-collector bipolar transistor was 

introduced and discussed in detail. The new design offers significant improvements in mirror 

gain accuracy over what is achievable with existing approaches in processes with low p 

transistors. Extensions of this structure in applications requiring high output impedance or 

multiple outputs were discussed also. This current mirror is particularly attractive for 

building current mirrors from lateral transistors in standard bipolar processes but can also be 

used with parasitic bipolar transistors in standard CMOS process 
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Q6^/ 

out 

Figure 6.7: A cascode current mirror with split-collector to compensate for the base 
currents 
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1/2-6 0 
1/7-6 I A 

Figure 6.8: A current mirror with multiple outputs (for N=2, N is the number of 
outputs) 
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CHAPTER 7 GENERAL CONCLUSIONS 

A high frequency voltage control oscillator with temperature and process 

compensation, a high-speed VCO-derived low-pass filter, a high-speed VCO-derived band­

pass filter and a current mirror with accurate mirror gain for low p transistors are presented in 

this dissertation. 

A temperature and process compensated VCO, which is designed to operate at 2 

GHz, and whose frequency variation due to incoming data is limited in 1% of its center 

frequency, was presented. The simulation results show that the circuit has only a temperature 

and process variation of ±3.33% over fast and slow process comers and over the 0°C to 100 

°C temperature range. This is a reduction of in excess of a factor of 10 when compared to a 

conventional VCO design. The test results show that, without process change presence, the 

frequency variation due to a temperature change over 0°C to 100 °C is around 1.1%. This is a 

reduction of a factor of 10 when compared to a conventional VCO. 

A method of designing monolithic filters derived from CMOS VCOs was introduced. 

A sample of the VCO-derived low-pass filters and a sample of the band-pass filters were 

presented. A low-pass filter with a cut-off frequency of 4.3 GHz was designed in TSMC 

CMOS 0.25 ;im process. It exhibits a THD of - 40dB with a 200mV single-end output 

swing. A band-pass filter with a center frequency tunable from 2.28 GHz to 3.11 GHz and a 

Q adjustable from 3 to 85 was also designed. It exhibits a THD of -40dB with an 80mV 

single-end output swing. The VCO-derived filters offer two main advantages over other 

types of integrated CMOS filters: higher operation frequency, and a higher and easily 

adjustable Q. VCO-derived filters offer potential for use in modem communication circuits 

that require modest distortion performance. 

A new current mirror design based on a split-collector bipolar transistor was 

introduced that offers significant improvements in mirror gain accuracy over what is 

achievable with existing approaches in processes with low (3 transistors and discussed in 

detail. Extensions of this structure in applications requiring high output impedance or 

multiple outputs were discussed. This current mirror is particularly attractive for building 
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current mirrors from lateral transistors in standard bipolar processes but can also be used with 

parasitic bipolar transistors in standard CMOS process. 
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